

Getting Started with Laravel 4

Discover Laravel – one of the most expressive, robust,
and flexible PHP web application frameworks around

Raphaël Saunier

BIRMINGHAM - MUMBAI

Getting Started with Laravel 4

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1130114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-703-1

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Raphaël Saunier

Reviewers
Fabio Alessandro Locati

Pavel Tkachenko

Acquisition Editors
Akram Hussain

Llewellyn Rozario

Commissioning Editor
Poonam Jain

Technical Editors
Ritika Singh

Nachiket Vartak

Copy Editors
Sarang Chari

Gladson Monteiro

Adithi Shetty

Project Coordinator
Michelle Quadros

Proofreader
Lucy Rowland

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Raphaël Saunier works as a full-stack Web Developer for Information Architects
in Zürich, Switzerland. He holds a degree in Information Management for Business
from University College London.

He is always looking for excuses to learn and play with new technologies, tools, and
techniques. He is also able to make pragmatic decisions that take into account the
strengths and weaknesses of the many well-established tools at the disposal of web
developers.

A strong advocate of Laravel, Ember.js, Vim, and PostgreSQL when he is among
developers, he is also passionate about teaching programming and general computer
literacy to people of all ages.

I would like to thank my partner Sonia for her support, and everyone
I worked with at Packt Publishing and the reviewers for their
constructive feedback.
Of course, I would also like to thank Taylor Otwell for the dedication
and enthusiasm with which he develops and promotes Laravel.
Dissecting the framework to understand its inner workings was a
truly enlightening experience.
Lastly, I would like to thank the Laravel community, and in
particular its most prominent members, who help improve the
framework and its documentation, organize events, assist beginners
on forums and IRC, produce learning resources, and as a result,
made Laravel the fantastic framework it has become!

About the Reviewers

Fabio Alessandro Locati is an Italian IT external consultant. His main areas of
expertise are Linux, networking, security, data centers, and web applications. With
nearly 10 years of work in the field, he has experienced a lot of different IT roles,
technologies, and languages. Fabio has worked in many different companies, from
single-man companies up to huge companies such as Tech Data. This has allowed
him to see the various technologies from different points of view, making him able to
develop critical thinking and to understand if a technology is the right one in a very
short time. As he is always on the lookout for better technologies, he always tries
the new technologies to see the advantages over the old ones. For web development,
he often uses PHP with Laravel due to its power and simplicity since he discovered
it in the early part of 2012. Fabio has used Laravel for public websites as well as for
intranet applications.

I'd like to thank my father who introduced me to computer science
before I was able to even write, and to my whole family, who have
always been supportive.

Pavel Tkachenko is an inspired, self-taught computer wizard. Since childhood,
his passion has been in designing and developing websites, reverse engineering
applications, file formats, and APIs. In both areas, he has created a number of original
tools, such as HTMLki, Sqobot, Lightpath, and ApiHook, to tackle many complex
computer problems. He is also the founder of the Russian Laravel.ru community
and an active member of Russian publication networks such as Habrahabr.ru.

He has been freelancing since 2009, working on e-commerce, entertainment, travel
and all other sorts of websites built around PHP, JavaScript, and MySQL. Since then,
and with over a decade of development experience, he has gathered his own team
to create even more challenging and quality applications for companies all over the
world, with high standards and great support. You can reach Pavel via his page at
http://proger.me.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Meeting Laravel 7

The need for frameworks 8
The limitations of homemade tools 8
Laravel to the rescue 8

A new approach to developing PHP applications 9
A more robust HTTP foundation 9
Embracing PHP 10

Laravel's main features and sources of inspiration 11
Expressiveness and simplicity 12

Prettifying PHP 13
Responsibilities, naming, and conventions 13
Helping you become a better developer 15

Structure of a Laravel application 16
The application container and request lifecycle 17
Exploring Laravel 17
Moving from Version 3 to Version 4 18

Summary 19
Chapter 2: Composer All Over 21

Working with the command line 22
How does Composer work? 22
Installation 23

Unix (Mac OS, Linux) 23
Windows 24

Creating a new Laravel application 24
Finding and installing new packages 25
Additional advice 26
Summary 27

Table of Contents

[ii]

Chapter 3: Your First Application 29
Sketching out the application 30

Entities, relationships, and attributes 30
The map of our application 30

Starting the application 32
Using the built-in development server 32

Writing the first routes 33
Restricting the route parameters 33
Catching the missing routes 35
Handling redirections 35
Returning views 35

Preparing the database 36
Creating the Eloquent models 36
Building the database schema 37
Seeding the database 38

Mastering Blade 39
Creating a master view 40

Back to the routes 41
The overview page 42
Displaying a cat's page 43
Adding, editing, and deleting cats 44

Summary 47
Chapter 4: Authentication and Security 49

Authenticating users 49
Creating the user model 49
Creating the necessary database schema 50
Authentication routes and views 52
Validating user input 56

Securing your application 57
Cross-site request forgery 57
Escaping content to prevent cross-site scripting – XSS 58
Avoiding SQL injection 59
Using mass-assignment with care 59
Cookies – secure by default 60
Forcing HTTPS when exchanging sensitive data 60

Summary 60
Chapter 5: Testing – It's Easier Than You Think 61

The benefits of testing 62
The anatomy of a test 62
Unit testing with PHPUnit 64

Table of Contents

[iii]

Defining what you expect with assertions 64
Preparing the scene and cleaning up objects 65
Expecting exceptions 65
Testing interdependent classes in isolation 66

End-to-end testing 67
Testing – batteries included 67
Framework assertions 68
Impersonating users 69
Testing with a database 69
Inspecting the rendered views 71

Summary 71
Chapter 6: A Command-line Companion Called Artisan 73

Keeping up with the latest changes 73
Inspecting and interacting with your application 74

Fiddling with the internals 75
Turning the engine off 76
Fine-tuning your application 76

Installing third-party commands 76
Speeding up your workflow with generators 77

Generating migrations 78
Generating HTML forms 78
Generating everything else 79

Deploying with a single command 79
Deployment, the old-school way 79

Rolling out your own artisan commands 80
Creating the command 80
The anatomy of a command 81
Writing the command 82

Summary 83
Chapter 7: Architecting Ambitious Applications 85

Moving from simple routing to powerful controllers 86
Favoring explicit routing 87
Straightforward REST routing 87

Supercharging your models 88
Simple performance tricks 88

Eager loading records 89
Selecting only what you need 89
Profiling your queries 89

Foolproof models with soft deletes 90
More control with SQL 90
Listening for model events 91

Table of Contents

[iv]

The handy paginator class 91
Environment configuration made easy 92

Environments and Artisan 93
Adding your own configuration settings 94

Bringing in your own classes 94
Playing nice with the frontend 95
Summary 96

Appendix: An Arsenal of Tools 97
Array helpers 97

The usage examples of array helpers 98
String and text manipulation 100

Boolean functions 100
Transformation functions 100
Inflection functions 101

Dealing with files 101
File uploads 101
File manipulation methods 102

Sending e-mails 103
Easier date and time handling with Carbon 104

Instantiating Carbon objects 105
Outputting user-friendly timestamps 105
Boolean methods 105
Carbon for Eloquent DateTime properties 106

Don't wait any longer with queues 106
Creating a job and pushing it onto the queue 106
Listening to a queue and executing jobs 107
Getting notified when a job fails 108
Queues without background processes 108

Where to go next? 108
Index 109

Preface
This book aims to bring you up to speed with the Laravel PHP framework. It
introduces the main concepts that you need to know in order to get started and
build your first web applications with Laravel 4.1 and later.

Mastering a new framework, such as Laravel, can be a challenging but very
rewarding experience. Not only do they introduce new ways of approaching
problems, frameworks can also challenge your prior knowledge of a particular area
and show you more efficient ways of achieving certain tasks. Above all, their aim is
to make you more productive and help you produce better code.

In the learning process, the quality of the documentation and the availability of
learning material are the decisive factors. Laravel is fortunate enough to have a
vibrant community that actively improves the official documentation and produces
a large number of resources. However, if you are a complete beginner, this wealth
of information might be somewhat overwhelming and, as a result, you might not
know where to start. This book will walk you through the different steps involved
in creating a complete web application and also present the different components
bundled with Laravel. After reading this book, you will be well-equipped to read
any part of the documentation or a tutorial on a particular component without
feeling lost.

What this book covers
Chapter 1, Meeting Laravel, will introduce the main concepts used by Laravel, its key
features, and the default structure of a Laravel project.

Chapter 2, Composer All Over, will enable you to install and use the Composer
dependency manager to download and install Laravel and third-party packages.

Chapter 3, Your First Application, will walk you through the different steps involved in
creating an application that interacts with a database.

Preface

[2]

Chapter 4, Authentication and Security, will show you how to add the user
authentication feature to your application. It will also cover the different security
considerations to bear in mind when developing applications with Laravel.

Chapter 5, Testing – It's Easier Than You Think, will demonstrate how to write and
run tests with PHPUnit, and will look at the different test helper methods that are
bundled with Laravel.

Chapter 6, A Command-line Companion Called Artisan, will introduce you to the use
of Artisan commands (Artisan is Laravel's command-line utility) to speed up your
workflow and write custom command-line scripts.

Chapter 7, Architecting Ambitious Applications, will give us the opportunity to take
a second look at the components that were used in the previous chapters, and to
uncover their more advanced capabilities.

Appendix, An Arsenal of Tools, presents the different tools and helpers that you
get for free when installing Laravel so that you do not find yourself rewriting
the functionality that already exists in the framework.

What you need for this book
In order to run the code samples in this book, you will need an installation of PHP
5.3.7 or later compiled with mcrypt support on Mac OS X, Linux, or Windows. PHP
is available as a standalone installation, but you can also use a local server such as
XAMPP or EasyPHP, on Windows, or MAMP on Mac OS X.

Although Mac OS X does ship with a version of PHP, it is not compiled
with mcrypt. You will either have to install a more recent version with a
tool such as Homebrew or use the bundled binary with MAMP.

All the code examples use a file-based SQLite database, but you are more than
welcome to use PostgreSQL or MySQL if you have either of them installed on
your system.

You will of course need a code editor, such as Vim, Sublime Text, or TextMate, to
create and edit the source file. If you are uncomfortable using the SQLite, MySQL, or
PostgreSQL command-line utilities, you may use a graphical database administration
interface, such as Sequel Pro or phpMyAdmin, although this is not strictly necessary.

The installation of Laravel and many other packages is done using the Composer
dependency manager, and is covered in detail in Chapter 2, Composer All Over.

Preface

[3]

Who this book is for
No prior knowledge of Laravel or any other modern web application framework is
assumed. If you already know your way around Laravel, you may want to consider
acquiring a different book, as a significant portion of this book deals with the basics.

This book is therefore ideal for web developers with prior experience of the PHP
programming language—or any C-like languages such as JavaScript, Perl, or
Java—along with some understanding of the basic OOP concepts.

Any experience with MVC frameworks, such as ASP.NET MVC or Ruby on Rails,
will certainly be beneficial but is not required. Lastly, some familiarity with the
command-line interfaces will also help, but is not essential.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"They are also known as closures and were introduced in PHP 5.3."

A block of code is set as follows:

Route::get('hello/{name}', function($name){
 return "Hello " . $name;
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

Route::get('hello/{name}', function($name){
 return "Hello " . $name;
})->where('name', '[a-zA-Z]*');

Any command-line input or output is written as follows:

$ php artisan routes

When the command-line input is specific to Windows, it is written as follows:

> php artisan routes

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Meeting Laravel
In the jungle of PHP frameworks, the latest newcomer, Laravel, has been getting
more and more attention recently. On many discussion forums, it has even
dethroned CodeIgniter and Symfony as the number one recommended framework.
What is it about this framework that makes both young and seasoned developers
rave about it?

In this chapter, we will cover the following topics:

• How web application frameworks help to increase productivity
• The fundamental concepts and the key features of Laravel
• The general structure and conventions of a Laravel application
• General advice if this is the first time you are working with a

Model-View-Controller (MVC) framework
• Migration tips for users of the previous version of Laravel

We will look at its key features and how they have made Laravel an indispensable
tool for many web developers. We will present the limitations of PHP, especially
when it is used without a modern framework, and how Laravel helps you to
overcome those shortcomings and write more robust, and more structured,
applications. Then, we will take a closer look at the anatomy of a Laravel application
and present the different features of PHP as well as the third-party packages it
leverages. After reading this chapter, you will have all the conceptual knowledge
that is required to get started and build your first application.

Meeting Laravel

[8]

The need for frameworks
Of all the server-side programming languages, PHP undoubtedly has the weakest
entry barriers. It is almost always installed by default on even the cheapest web
hosts, and it is also extremely easy to set up on any desktop operating system. For
newcomers who have some experience with HTML, the concepts of variables, inline
conditions, and include statements are easy to grasp. PHP also provides many
commonly used functions that one might need when developing a website. All of
this contributes to what some refer to as the immediacy of PHP. However, this instant
gratification comes at a cost. It gives a false sense of productivity to beginners, who
almost inevitably end up with unnecessarily complex and tangled code as they add
more features to their site. This is mainly because PHP, out of the box, does not do
much to encourage the separation of concerns.

The limitations of homemade tools
If you already have a few PHP projects under your belt, but have not used a web
application framework before, then you will probably have your personal collection
of commonly used functions or classes that you have amassed from one project to the
next. These utilities help you solve recurring problems, such as sanitizing database
calls, authenticating users, and including pages dynamically. You might also have a
predefined directory structure where these classes and the rest of your application
code reside. However, all of this will exist in complete isolation; you would be solely
responsible for the maintenance, inclusion of new features, and documentation.
This can be a tedious and time-consuming task. Not to mention that if you were
to collaborate with other developers on the project, they would first have to get
acquainted with the way you build applications.

Laravel to the rescue
This is exactly where a web application framework such as Laravel comes to the
rescue. Laravel re-uses and assembles existing components to provide you with
a cohesive layer upon which to build your web applications in a more structured
and pragmatic way. Drawing inspiration from popular frameworks written in both
PHP and other programming languages, Laravel offers a robust set of tools and an
application architecture that incorporates many of the best features of CodeIgniter,
Yii, ASP.NET MVC, Ruby on Rails, and Sinatra.

Chapter 1

[9]

If you have already used one of those tools or a different framework that implements
the Model-View-Controller (MVC) paradigm, you will find it very easy to get
started with Laravel 4.

A new approach to developing PHP
applications
It is a great time to discover (or fall back in love with) PHP. Over the years, the
language has earned itself a bad reputation amongst developers who were forced
to work on and maintain badly coded applications. Moreover, at the language
level, PHP is also notorious for its naming inconsistencies and questionable design
decisions regarding its syntax. As a consequence, there has been an exodus to more
credible frameworks written in Ruby and Python. Since these languages were
nowhere as feature-rich for the Web as PHP, the creators of Ruby on Rails and
Django, for instance, had to recreate some essential building blocks, such as classes,
to represent HTTP requests and responses and were, therefore, able to avoid some of
the mistakes that PHP had made before them. From the start, these frameworks also
forced the developer to adhere to a predefined application architecture.

A more robust HTTP foundation
A few years on , these ideas have found their way back into PHP. The Symfony
project has adopted these principles to recreate a more solid, flexible, and testable
HTTP foundation for PHP applications. Along with the latest version of Drupal and
phpBB, Laravel is one of the many open source projects that use this foundation
together with several other components that form the Symfony framework.

Laravel does not just rely on and extend Symfony components, it also depends on
a variety of other popular libraries, such as SwiftMailer for more straightforward
e-mailing, Carbon for more expressive date and time handling, Doctrine for its
inflector and database abstraction tools, and a handful of other tools to handle
logging, class loading, and error reporting. In short, rather than trying to do
everything itself, Laravel stands on the shoulders of giants.

Meeting Laravel

[10]

Embracing PHP
Laravel requires a relatively recent version of PHP, 5.3.7, released in August 2011.
This version provides some nifty features that you might not be aware of if you
have been working with earlier versions of PHP, or if you're completely new to the
language. In this book, and when reading code examples for Laravel applications
online, you will encounter some of these new features. For this reason, we will
quickly have a look at them to make sure they don't throw you off!

• Namespaces: It is used extensively in languages such as Java and C# and
helps you to avoid name collisions that happen when the same function
name is used by two completely different libraries. Namespaces are
separated by backslashes, and this is mirrored by the directory structure,
with the only difference being the use of slashes on Unix systems in
accordance with the PSR-0 conventions. They are declared at the top of the
file as <?php namespace Illuminate\Database\Eloquent. To specify the
namespaces in which PHP should look for classes, we insert use followed
by the "namespaced" class, for example, use Illuminate\Database\
Eloquent\Model;.

• Interfaces: They are also known as Contracts and are a way of defining the
methods that a class should provide, if it implements that interface. Interfaces
do not contain any implementation details; they are merely contracts. So,
for instance, if a class implements JsonableInterface, it needs to have a
toJson() method.

• Anonymous functions: They are also known as closures and were
introduced in PHP 5.3. Somewhat reminiscent of JavaScript, they help you
produce shorter code, and you will use them extensively when building
Laravel applications to define routes, events, filters, and in many other
instances. The following is an example of an anonymous function attached
to a route: Route::get('hi', function() { return 'hi'; });.

• Overloading: Also called dynamic or magic methods, they allow you
to call methods such as whereUsernameOrEmail($name, $email) that
were not previously defined in a class. These calls are handled by the
__call() method, which then tries to parse the name to execute one or
more known methods. In this case ->where('username', $username)-
>orWhere('email', $email).

• Shorter array syntax: Since PHP 5.4, a shorter array syntax has been
introduced. Instead of writing array('primes' =>array(1,3,5,7)), it is
now possible to write ['primes'=>[1,3,5,7]]. Although we will use the
old syntax in this book, you will probably come across the new syntax on the
Web. If your server supports PHP 5.4, there is no reason not to use them.

Chapter 1

[11]

Laravel's main features and sources of
inspiration
Let us now look at what you get when you start a project with Laravel and how these
features can help you boost your productivity:

• Modularity: Laravel was built on top of over 20 different libraries and is
itself split up into individual modules. Tightly integrated with Composer
Dependency Manager, it can be updated with ease.

• Testability: Built from the ground up to ease testing, Laravel ships with
several helpers that let you visit routes from your tests, crawl the resulting
HTML, ensure that methods are called on certain classes, and even
impersonate authenticated users.

• Routing: Laravel gives you a lot of flexibility when you define the routes of
your application. For example, you may manually bind a simple anonymous
function to a route with an HTTP verb, such as GET, POST, PUT, or DELETE.
This feature is inspired by micro-frameworks, such as Sinatra (Ruby)
and Silex (PHP). Moreover, it is possible to attach filter functions that are
executed on particular routes.

• Configuration management: More often than not, your application will
be running in different environments, which means that the database or
e-mail server credentials settings or the displaying of error messages will be
different when your app is running on a local development server than when
it is running on a production server. Laravel lets you define settings for each
environment and then automatically selects the right settings depending on
where the app is running.

• Query builder and ORM: Laravel ships with a fluent query builder, which
lets you issue database queries with a PHP syntax where you simply chain
methods instead of writing SQL. In addition to this, it provides you with an
Object relational mapper (ORM) and ActiveRecord implementation, called
Eloquent, which is similar to what you would find in Ruby on Rails to help
you define interconnected models. Both the query builder and the ORM are
compatible with different databases, such as PostgreSQL, SQLite, MySQL,
and SQL Server.

• Schema builder, migrations, and seeding: Also inspired by Rails, these
features allow you to define your database schema with PHP code and keep
track of any changes with the help of database migrations. A migration is a
simple way of describing a schema change and how to revert to it. Seeding
allows you to populate selected tables of your database, for example, after
running a migration.

Meeting Laravel

[12]

• Template engine: Partly inspired by the Razor template language in ASP.
NET MVC, Laravel ships with Blade, a lightweight template language with
which you can create hierarchical layouts with predefined blocks where
dynamic content is injected.

• E-mailing: With its Mail class, which wraps the popular SwiftMailer
library, Laravel makes it very easy to send an e-mail, even with rich content
and attachments, from your application.

• Authentication: Since user authentication is such a common feature in web
applications, Laravel provides you with the tools to register, authenticate,
and even send password reminders to users.

• Redis: It is an in-memory key-value store that has a reputation for being
extremely fast. If you give Laravel a Redis instance that it can connect to,
it can use it as a session and general-purpose cache and also give you the
possibility to interact with it directly.

• Queues: Laravel integrates with several queue services, such as Amazon
SQS and IronMQ, to allow you to delay resource-intensive tasks, such as the
e-mailing of a large number of users, and run them in the background rather
than keep the user waiting for the task to complete.

Expressiveness and simplicity
At the heart of Laravel's philosophy is simplicity and expressiveness. This means
that particular attention has been given to the naming of classes to effectively
convey their actions in plain English. Consider the following code example:

<?php

Route::get('area/{id}', function($id){
 if(51 == $area and !Auth::check()) {
 return Redirect::guest('login');
 } else {
 return "Welcome to Area " . $area;
 }
})->where('id, '[0-9]+');

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[13]

Even though we have not even installed Laravel or presented its routing functions yet,
you will probably have a rough idea of what this snippet of code does. Expressive code
is more readable for someone new to a project, and it is probably also easier to learn
and remember for you.

Prettifying PHP
The authors of Laravel have gone on to apply these principles to existing
functions as well. A prime example is the File class, which was created to
make file manipulations:

• more expressive: To find out when a file was last deleted, use
File::lastModified($path) instead of filemtime(realpath($path))
To delete a file, use File::delete($path) instead of @unlink($path),
which is the standard PHP equivalent.

• more consistent: Some of the original file manipulation functions of PHP are
prefixed with file_, while others just start with file; some are abbreviated
and other are not.

• more testable: Many of the original functions can be tricky to use in tests
due to the exceptions they throw and also because they are more difficult
to mock.

• more feature complete: This is achieved by adding functions that did not exist
before, such as File::copyDirectory($directory, $destination).

There are very rare instances where expressiveness is sacrificed for brevity. This
is the case for commonly used shortcut functions, such as e(), that escape HTML
entities or dd() and which you can use to halt the execution of the script and dump
the contents of one or more variables.

Responsibilities, naming, and conventions
At the beginning of this chapter, we pointed out that one of the main issues with
standard PHP applications was the lack of a clear separation of concerns; business
logic becomes entangled with the presentation and data tier. Like many other
frameworks that favor convention over configuration, Laravel gives you a scaffolding
with predefined places to put code in. To help you to eliminate trivial decisions, it
expects you to name your variables, methods, or database table names in certain ways.
It is, however, far less opinionated than a framework like Ruby on Rails and in areas
like routing, where there is often more than one way to solve a problem.

Meeting Laravel

[14]

We have also pointed out that Laravel is an MVC framework. Do not worry if you
have not used this architecture pattern before, in a nutshell, this is what you need
to know about MVC in order to be able to build your first Laravel applications.

• Models: Just think of the models as entities of your system. Very often,
but not always, they correspond to tables in your database. As we will see,
all that is required to define a model is to create a new class that extends
the Eloquent class. While the class name is defined with a singular noun in
CamelCase, the corresponding table at the database level will by convention
have to be the pluralsnake_case version of that class name. Thanks to
the inflection libraries it uses, Eloquent will know that a model called
VisitedCountry corresponds to the visited_countries table in the
database. Laravel will also expect the primary key to be called id, and by
default it will look for the created_at and edited_at fields that it updates
automatically. Like every other part of Eloquent, and in accordance with
the convention over configuration paradigm, if the default behavior is not
quite working for you, you can always choose to override it. Models also
contain information about how they relate to other models. Using the Active
Record terminology, it is possible to define the belongsTo, hasMany, and
belongsToMany relationships.

• Controllers or routes: There are two types of controllers in Laravel,
standard controllers and resource controllers. Their job is to make sense of
the incoming requests and to send an appropriate response. Both adhere
to slightly different conventions. Traditional controllers are similar to what
you would find in frameworks such as CodeIgniter, where a detail action
that takes one parameter and which lives in the Projects controller could,
by convention, be reached at /projects/detail/123. Resource controllers,
on the other hand, allow you to define the RESTful controllers that respond
to the different HTTP verbs, such as GET, POST, PUT, and DELETE. Lastly,
for smaller and simpler applications, it is possible to bypass controllers
altogether and write the entire application logic in routes.

• Views or Templates: Views are responsible for displaying the data that the
controller received from the model. They can be conveniently built using the
Blade template language or simply using standard PHP. The file extension
of the view, either .blade.php or simply .php, determines whether or not
Laravel treats your view as a Blade template when it renders it.

Chapter 1

[15]

The following diagram illustrates the interactions between all the constituent parts:

While it will still be possible to write unstructured code and go against the MVC
paradigm and the framework's conventions, it will often involve more effort on
the developer's part.

Helping you become a better developer
Laravel's design decisions, and in particular, the way in which it inspires developers
to write framework-agnostic code promises it a bright future. In addition to this, its
community is probably one of its strongest assets; it is possible to get answers within
minutes on forums, IRC, and Twitter.

However, frameworks come and go, and it is hard to predict when Laravel will
lose its steam and be supplanted by a better or more popular framework. However,
Laravel will not only make you more productive in the short term, it also has
the potential to make you a better developer in the long run. By using it to build
web applications, you will indirectly become more familiar with the following
concepts, all of which are highly transferable to any other programming language
or framework. These include the MVC paradigm and Object-oriented programming
design patterns, the use of dependency managers, testing and dependency injection,
and the power and limitations of ORMs and database migration.

Meeting Laravel

[16]

It will also inspire you to write more expressive code with descriptive DocBlock
comments that facilitate the generation of documentation as well as the future
maintenance of the application.

Structure of a Laravel application
In the next two chapters, we will be installing Laravel and creating our first
application. Any new project already has a complete directory tree and even some
placeholder files to get you up and running in very little time. This structure is a
great starting point, but as we will see in the final chapter of this book, it is also
customizable. Here is what it looks like:

./app/ # Your Laravel application
 ./app/commands/ # - Command line scripts
 ./app/config/ # - Configuration files
 ./app/controllers/ # - Controllers
 ./app/database/ # - Database migrations and seeders
 ./app/lang/ # - Localisation variables
 ./app/models/ # - Classes used to represent entities
 ./app/start/ # - Startup scripts
 ./app/storage/ # - Cache and logs directory
 ./app/tests/ # - Test cases
 ./app/views/ # - Templates that are rendered to HTML
 ./app/filters.php # - Filters executed before/after a request
 ./app/routes.php # - URLs and actions

./bootstrap/ # Application bootstrapping scripts

./public/ # Document root
 ./public/.htaccess # - Sends incoming requests to index.php
 ./public/index.php # - Starts Laravel application

./vendor/ # Third-party dependencies installed
 through Composer

./artisan* # Artisan command line utility

./composer.json # Project dependencies

./phpunit.xml # Test configuration file for PHPUnit

./server.php # Local development server

Chapter 1

[17]

Like the rest of Laravel, the naming is expressive, and it is easy to guess what
each folder is for. On the first level, there are four directories, app/, bootstrap/,
public/, and vendor/. All your server-side code will reside in the app/ directory,
inside which you will find the three directories that hold the files for the controllers,
models, and views. We will explore the responsibilities of each directory further in
the next chapters.

The application container and request
lifecycle
Whether you are a beginner in PHP or an experienced developer in a different
language, it might not always be obvious how an HTTP request reaches a Laravel
application. Indeed, the request lifecycle is fundamentally different from plain PHP
scripts that are accessed directly by their URI (for example, GET http://example.
com/about-us.php).

The public/ directory is meant to act as the document root; in other words, the
directory in which your web server starts looking after every incoming request. Once
URL rewriting is properly set up, every request that does not match an existing file
or directory hits the /public/index.php file. The job of this file is to register the
Composer class autoloader, which tells PHP where to look for any classes that are
called. It then bootstraps the application by setting its environment based on the
host name and binding the different paths of your application. Once that is done,
it simply instantiates a new application container, which is in turn responsible
for dealing with the incoming request. This application container uses an HTTP
verb and request URL (for example, POST /comments) and maps it to the correct
controller action or route.

Exploring Laravel
In this chapter, we are only covering the general mechanisms of how Laravel works,
without looking at the detailed implementation examples. For the majority of
developers who just want to get the job done, this is sufficient. Moreover, it is much
easier to delve into the source code of Laravel once you have already built a few
applications. Nevertheless, here are some answers to the questions that might crop
up when exceptions are thrown or when you navigate through the source code. In
doing so, you will come across some methods that are not documented in the official
guide, and you might even be inspired to write better code.

Meeting Laravel

[18]

Browsing the API (http://laravel.com/api) can be somewhat intimidating at first.
But it is often the best way to understand how a particular method works under the
hood. Here are a few tips:

• The Illuminate namespace does not refer to a third-party library. It is the
namespace that the author of Laravel has chosen for the different modules
that constitute Laravel. Every single one of them is meant to be reusable and
used independently from the framework.

• When searching for a class definition, for example, Auth, in the source code
or the API, you might bump into Façade, which hardly contains any helpful
method and only acts as a proxy to the real class. This is because almost
every dependency in Laravel is injected into the application container when
it is instantiated.

• Most of the libraries that are included in the vendor/ directory contain a
README file, which details the functionality present in the library (for
example, vendor/nesbot/carbon/readme.md).

Moving from Version 3 to Version 4
The rise in popularity of Laravel started with its third version. Although most of the
core features have been ported to version 4, if you have already written applications
with Laravel 3, and you are reading this book to get up to speed with the changes
and maybe migrate your app, here are the main changes that you need to be
aware of:

• Packages are the new bundles: Laravel 3 had a thriving ecosystem of plug-ins,
called bundles. The PHP community is trying to steer away from framework-
specific packages since they complicate future maintenance, and release more
generic packages instead. If you happen to stumble upon a Laravel bundle that
seems to solve a problem, you are having in your applications, unfortunately
it will not work with Laravel 4. To replace them, it now encourages the use of
packages, many of which are framework-agnostic.

• Composer all over: The next chapter will explore this in more detail, but
Laravel 4 uses composer to manage its various dependencies and keep them
up to date.

• New coding conventions: As mentioned previously, Laravel 4 adheres to
the PSR-0 and PSR-1 standards. The most notable change is the switch to
camelCase methods and class names, where User::where_email_and_
active($email, true) became User::whereEmailAndActive($email,tr
ue) and User_Controller became UserController.

Chapter 1

[19]

• Dependency injection: Laravel 4 has been rewritten to heavily rely on
dependency injection. This makes it easy to swap out entire classes and
facilitates testing.

• Documentation: The new documentation has been simplified and the topics
have been regrouped. Compared to the 3.0 documentation, it is slightly terser
in some areas. The API, generated with ApiGen, also has a fresh look and is
a joy to browse.

• Renamed methods: Other changes to consider, especially when migrating an
existing application, is the renaming of certain methods URL::to_route was
shortened to URL::route.

Summary
In this chapter, we have introduced the main characteristics of Laravel 4 and how
it can help you to write more structured applications while reducing the amount
of boilerplate code. We have also explained the concepts and PHP features used by
Laravel, and you should now be well equipped to get started and write your first
application! In the next chapter we will learn how to install and use Composer, a
dependency manager for PHP, which will install Laravel and its dependencies for you.

Composer All Over
From the previous chapter, you now know that Laravel was built on top of several
third-party packages. Rather than including these external dependencies in its own
source code, Laravel uses Composer, a dependency manager, to download them
and keep them up-to-date. Since it is a package itself, Laravel is also treated like a
dependency is, therefore, very easy to install.

In this chapter, we will cover the following topics:

• The problems that dependency managers solve
• Installation instructions for Windows and Unix systems (Mac OS X, Linux)
• Creating a new Laravel project with Composer
• Finding and installing additional packages
• General advice for working with Composer

Strongly inspired by popular dependency managers, such as Bundler from the Ruby
community, or npm, used by node.js and other JavaScript projects, Composer
brings their features to the PHP world. However, by default it will not install
packages globally; instead, it is meant to be used on a per-project basis. If you need
to install PHP dependencies for your entire system, you should still use PEAR, the
package manager that is bundled with PHP by default.

If you have not used one before, here are the main reasons to use a dependency
manager in your workflow:

• It is quicker than searching for, downloading, and unzipping the different
packages manually

• It helps you avoid version conflicts when upgrading individual dependencies
• The auto-loading of the different classes is done for you
• The discovery and selection of packages is greatly simplified thanks to a

central repository

Composer All Over

[22]

Working with the command line
If you are just getting started with web development, you might not be completely
familiar with the command-line interface (CLI). Working with a Composer, and
later on with Artisan, Laravel's CLI utility, will require some interaction with it.

Here is how you can start it:

1. On Windows, look for the Command Prompt program. If you cannot find it,
just click on Start | Run and type in cmd.exe.

2. On Mac OS X, it is called Terminal and it can be found inside
/Applications/Utilities.

3. On Linux, depending on your distribution of Linux, it will be called Terminal
or Konsole, but if you are running Linux, you are probably already familiar
with it.

You do not need to have any advanced command-line skills to get through this book
and build applications with Laravel. You will, however, need to be able to navigate
to the right directory in your filesystem before running commands. To do this, just
enter the cd command followed by the path to your code directory.

On most systems you can also just enter cd followed by a space and then
drag-and-drop the directory into the terminal.
 $ cd /path/to/your/code/directory

Or you can run the following command line on Windows:

> cd C:\path\to\your\code\directory

In the rest of this book, unless the example is specific to Windows, we will always use
the $ character to denote a shell command and use slashes as directory separators.
Make sure you adapt the command accordingly if you are running Windows.

How does Composer work?
Composer (http://getcomposer.org/) comes as a PHP executable, which is added
to your PATH environment variable (that is, the list of locations that is searched when
you run a command). When installed correctly, it can be executed in the command line
from anywhere in your filesystem using the composer command. Your project, with its
dependencies, is defined with a JSON file, called composer.json. Composer reads the
contents of this file and connects to Packagist, (https://packagist.org/) an online
repository, to resolve the different dependencies, recursively.

Chapter 2

[23]

These dependencies are then downloaded to a local directory, in our case, vendor/,
and the state of the dependencies is saved to a file called composer.lock. Composer
also generates an autoload.php file at the root of the vendor/ directory that wires
up the auto-loading of classes when it is included in a PHP script (using require
'vendor/autoload.php').

Installation
Installing Composer on Unix or a Windows system is very straightforward thanks to
its installer and installation scripts.

Unix (Mac OS, Linux)
First of all, we need to make sure that the php executable can be called from the
command line. To do so, simply open a new terminal window and enter:

$ php -v

This will show you the information related to the currently installed PHP version.
If you get a command not found error or have a version that is inferior to the
minimum requirement (which is, 5.3.7), refer to the distribution-specific installation
guide at http://php.net. On Mac OS, whether you have installed PHP with
MAMP or Homebrew, you will have to make sure that it is included and loaded
first in your PATH variable.

Then, once you have made sure that PHP is reachable from the command line,
to install Composer, enter the following command:

$ curl -sS https://getcomposer.org/installer | php

To make it available globally, just move it to a directory that is included in your
PATH. If you get a permissions error, select a different directory for which you
have write access or, if you can, prefix the command with sudo.

$ sudo mv composer.phar /usr/local/bin/composer

Finally, to ensure that it is installed correctly, open a new terminal window and enter
the following:

$ composer

This will give you a list of all the available commands.

Composer All Over

[24]

Windows
To install Composer on Windows, and assuming that you already have a working
version of PHP installed, simply head to http://getcomposer.org/download/
and download the Composer-Setup.exe file.

The installer will ask you to locate the PHP executable. Common locations for
php.exe include:

• Default location: C:\PHP5\php.exe or C:\PHP\php.exe
• If you are using XAMPP: C:\xampp\php\php.exe
• If you are using WAMP: C:\wamp\bin\php\php5.x.x\php.exe

If you cannot find it in these locations but you are certain that it is installed
somewhere, simply use the Windows search to find php.exe on your hard drive.

The installer will then take care of the rest by installing Composer and adding the
php and composer commands to your PATH.

To make sure that it is installed properly, open a new command prompt and enter
the following two commands:

> php -v

> composer

Both commands should output the respective version information messages.

Creating a new Laravel application
Once Composer is installed, it is extremely easy to create a new Laravel project.
After navigating to the directory in which you want to start the project, simply
run the following command line:

$ composer create-project laravel/laravel --prefer-dist

This will download the latest version of Laravel as well as its dependencies.
Depending on your CPU and connection speed, this could take a few minutes.
Once it is complete, you will find the complete directory structure that was
presented in the previous chapter and you will be ready to start your first project.

If you are using Git for version control, this is a good time to run a git init;
the root of the directory already contains a .gitignore file and the placeholder
directories each have a .gitkeep file.

Chapter 2

[25]

Finding and installing new packages
Using the search on http://packagist.org, you can find packages to add common
features, such as image manipulation or PDF generation to your application.
Indicators of good packages beyond the number of downloads and the number of
stars on GitHub are the quality of documentation, the test coverage, and the overall
project activity. Before adding a new package, you can also browse the different
versions of a package and its dependencies on Packagist:

In development it is fine to use a dev-master branch, but in production, it is better to
stick with a precise version number to avoid potential compatibility issues.

Composer All Over

[26]

To install a package, open composer.json in a text editor and insert its name and the
desired version in the require object:

"require": {
 "laravel/laravel": "v4.1.*",
 "intervention/image": "dev-master"
}

Since it is a JSON file, you need to be careful not to leave any trailing commas on the
last line. To check if there are any errors in your composer.json file, you can use the
composer validate command.

Then, simply run composer install and Composer will fetch the package and its
dependencies. To update the composer.lock file and save the exact version numbers
of the resolved dependencies, call composer update. If you deploy or distribute
your application, the lock file allows everyone else to retrieve the exact same
packages when they run composer install. The update command, on the other
hand, will always check for the latest version of every package and if you run it in
production, you risk running into compatibility issues.

Additional advice
Before you go off and start writing your first Laravel application, here are some
additional tips to work with Composer.

• Commit the composer.lock file to your VCS repository to bypass the
dependency resolution and make sure that everyone you collaborate with
works with the exact same versions of the dependencies.

• You are not meant to check the contents of the vendor/ directory in version
controller. It is already excluded in the .gitignore file. Including it would
increase the size of your repository and commit messages. As long as there is
a composer.json and .lock file, anyone who downloads your application
will be able to resolve the dependencies.

• You are not meant to edit any files inside vendor/ either, since these would
be overwritten the next time you run composer install.

• Composer gives you two options, --prefer-source and --prefer-dist,
when you install packages. The difference between these two options is
that with the dist option, Composer will favor stable releases and avoid
downloading the entire Git history if possible.

Chapter 2

[27]

• The total size of the vendor/ directory will be in the region of 25 MB with
--prefer-dist and about three times of that with --prefer-source, since
the complete Git history of each package is included. When you deploy a
Laravel application, you are meant to run composer install on the server.
If FTP deployment is your option, there are packages such as barryvdh/
laravel-vendor-cleanup that you can use to remove the non-essential files
before uploading everything to your server.

• Composer's diagnose command and the verbosity flags (-v|vv|vvv) can
help you identify common problems and will make it easier for people to
help you on IRC, Stack Overflow, and forums.

Summary
In this chapter we have explained the problems solved by dependency managers.
We have installed Composer and created our first Laravel project. We have also
learned about how to find and install packages and how to avoid common
mistakes when working with Composer.

The next chapter is where the real fun begins! Now that you have a working
installation of Composer, we will go through the different steps involved in
creating a complete Laravel application.

Your First Application
Having learned about the conventions and responsibilities in Laravel, and
how to create a new project with Composer, you are now ready to build your
first application!

In this chapter, you will use the concepts presented in the previous two chapters in
a practical way and learn how to do the following:

• Sketch out the URLs and entities of your application
• Troubleshoot common issues when getting started
• Define the routes and their actions as well as the models and their relationships
• Prepare your database and learn how to interact with it using Eloquent
• Use the Blade template language to create hierarchical layouts

The first step in creating a web application is to identify and define its requirements.
Then, once the main features have been formulated, we derive the main entities
as well as the URL structure of the application. Having a well-defined set of
requirements and URLs is also essential for other tasks such as testing; this will
be covered later in the book.

A lot of new concepts are presented in this chapter. If you have trouble
understanding something or if you are not quite sure where to place a particular
snippet of code, you can download the annotated source code of the application
on http://packtpub.com/support, which will help you to follow along.

Your First Application

[30]

Sketching out the application
We are going to build a browsable database of cat profiles. Visitors will be able to
create pages for their cats and fill in basic information such as the name, date of birth,
and breed for each cat. This application will support the default Create-Retrieve-
Update-Delete operations (CRUD). We will also create an overview page with the
option to filter cats by breed. All of the security, authentication, and permission
features are intentionally left out since they will be covered in the next chapter.

Entities, relationships, and attributes
Firstly, we need to define the entities of our application. In broad terms, an entity is a
thing (person, place, or object) about which the application should store data. From
the requirements, we can extract the following entities and attributes:

• Cats, which have a numeric identifier, a name, a date of birth, and a breed
• Breeds, which only have an identifier and a name

This information will help us when defining the database schema that will store the
entities, relationships, and attributes, as well as the models, which are the PHP
classes that represent the objects in our database.

The map of our application
We now need to think about the URL structure of our application. Having clean
and expressive URLs has many benefits. On a usability level, the application will
be easier to navigate and look less intimidating to the user. For frequent users,
individual pages will be easier to remember or bookmark and, if they contain
relevant keywords, they will often rank higher in search engine results.

To fulfill the initial set of requirements, we are going to need the following routes in
our application:

Method Route Description
GET / Index
GET /cats Overview page
GET /cats/breeds/:name Overview page for specific breed
GET /cats/:id Individual cat page
GET /cats/create Form to create a new cat page

Chapter 3

[31]

Method Route Description
POST /cats Handle creation of new cat page
GET /cats/:id/edit Form to edit existing cat page
PUT /cats/:id Handle updates to cat page
GET /cats/:id/delete Form to confirm deletion of page
DELETE /cats/:id Handle deletion of cat page

We will shortly learn how Laravel helps us to turn this routing sketch into actual
code. If you have written PHP applications without a framework, you can briefly
reflect on how you would have implemented such a routing structure. To add
some perspective, this is what the second to last URL could have looked like with
a traditional PHP script (without URL rewriting): /index.php?p=cats&id=1&_
action=delete&confirm=true.

The preceding table can be prepared using a pen and paper, in a spreadsheet
editor, or even in your favorite code editor using ASCII characters. In the initial
development phases, this table of routes is an important prototyping tool that forces
you to think about URLs first and helps you define and refine the structure of your
application iteratively.

If you have worked with REST APIs, this kind of routing structure will look familiar
to you. In RESTful terms, we have a cats resource that responds to the different
HTTP verbs and provides an additional set of routes to display the necessary forms.

If, on the other hand, you have not worked with RESTful sites, the use of the PUT
and DELETE HTTP methods might be new to you. Even though web browsers do
not support these methods for standard HTTP requests, Laravel uses a technique
that other frameworks such as Rails use, and emulates those methods by adding
a _method input field to the forms. This way, they can be sent over a standard
POST request and are then delegated to the correct route or controller method
in the application.

Note also that none of the form submissions endpoints are handled with a GET
method. This is primarily because they have side effects; a user could trigger the
same action multiple times accidentally when using the browser history. Therefore,
when they are called, these routes never display anything to the users. Instead, they
redirect them after completing the action (for instance, DELETE /cats/:id will
redirect the user to GET /cats).

Your First Application

[32]

Starting the application
Now that we have the blueprints for the application, let's roll up our sleeves and
start writing some code.

Start by opening a new terminal window and create a new project with Composer,
as follows:

$ composer create-project laravel/laravel cats --prefer-dist

$ cd cats

Once Composer finishes downloading Laravel and resolving its dependencies, you
will have a directory structure identical to the one presented in the first chapter.

Using the built-in development server
To start the application, unless you are running an older version of PHP (5.3.*), you
will not need a local server such as WAMP on Windows or MAMP on Mac OS since
Laravel uses the built-in development server that is bundled with PHP 5.4 or later.

To start the development server, we use the following artisan command:

$ php artisan serve

Artisan is the command-line utility that ships with Laravel and its features will be
covered in more detail in a future chapter.

Next, open your web browser and visit http://localhost:8000; you will be
greeted with Laravel's welcome message.

If you get an error telling you that the php command does not exist or cannot be
found, make sure that it is present in your PATH variable. If the command fails
because you are running PHP 5.3 and you have no upgrade possibility, simply use
your local development server (MAMP/WAMP) and set Apache's DocumentRoot
to point to cats-app/public/.

Chapter 3

[33]

Writing the first routes
Let's start by writing the first two routes of our application inside app/routes.php.
This file already contains some comments as well as a sample route. You can
keep the comments but you must remove the existing route before adding the
following routes:

Route::get('/', function(){
 return "All cats";
});

Route::get('cats/{id}', function($id){
 return "Cat #$id";
});

The first parameter of the get method is the URI pattern. When a pattern is matched,
the closure function in the second parameter is executed with any parameters that
were extracted from the pattern. Note that the slash prefix in the pattern is optional;
however, you should not have any trailing slashes. You can make sure that your
routes work by opening your web browser and visiting http://localhost:8000/
cats/123.

If you are not using PHP's built-in development server and are getting a 404 error
at this stage, make sure that Apache's mod_rewrite configuration is enabled and
works correctly.

Restricting the route parameters
In the pattern of the second route, {id} currently matches any string or number.
To restrict it so that it only matches numbers, we can chain a where method to our
route as follows:

Route::get('cats/{id}', function($id){
 return "Cat #$id";
})->where('id', '[0-9]+');

The where method takes two arguments: the first one is the name of the parameter
and the second one is the regular expression pattern that it needs to match.

Your First Application

[34]

If you now try to visit an invalid URL, Laravel will throw a NotFoundHttpException
and display a pretty and informative stack trace:

Do not be intimidated by the colors or the amount of information displayed; this
is simply a list of functions that were executed before the error occurred. It also
provides you with an overview of the data (that is, server and request data,
GET/POST Data, Files, Cookies, and Session values) that the application receives
and will therefore be indispensable when debugging an application.

Chapter 3

[35]

Catching the missing routes
Instead of displaying a detailed error message to your visitors, you can catch the
"Not Found" exception and display a custom message by defining the following
missing method for your application inside app/start/global.php:

App::missing(function($exception){
 return Response::make("Page not found", 404);
});

Here we are not merely returning a string, but a Response object with the message
as its first parameter and an HTTP status code as the second parameter. In the
first two routes that we wrote, Laravel automatically converted the string that
we returned into a 200 OK HTTP response (for example, in the first route it is:
Response::make("All cats", 200)). While the difference might not be obvious
to the end users, the distinction between "404 Not Found" and "200 OK" is important
for the search engines that crawl your site or when you are writing an API.

Handling redirections
It is also possible to redirect visitors by returning a Redirect object from your
routes. If for example, we wanted everyone to be redirected to /cats when they
visit the application for the first time, we would write the following lines of code:

Route::get('/', function(){
 return Redirect::to('cats');
});

Route::get('cats', function(){
 return "All cats";
});

Returning views
The most frequent object that you will return from your routes is the View object.
Views receive data from a route (or controller) and inject it into a template, therefore,
helping you to separate the business and presentation logic in your application.

To add your first view, simply create a file called about.php inside app/views
and add the following content to it:

<h2>About this site</h2>
There are over <?php echo $number_of_cats; ?> cats on this site!

Your First Application

[36]

Then return the view using the View::make method with a variable,
$number_of_cats:

Route::get('about', function(){
 return View::make('about')->with('number_of_cats', 9000);
});

Finally, visit /about in your browser to see the rendered view. This view was written
with plain PHP; however, Laravel comes with a powerful template language called
Blade, which will be introduced later in this chapter.

Preparing the database
Before we can expand the functionality of our routes, we need to define the
models of our application, prepare the necessary database schema, and populate the
database with some initial data. To keep things simple and also show the flexibility
of the Eloquent ORM, we are going to use SQLite, a lightweight file-based database.

To configure Laravel to use SQLite, open app/config/database.php and change
the default database connection name from mysql to sqlite. Also make sure that
the default database file, app/database/production.sqlite, exists.

Creating the Eloquent models
The first and easiest step is to define the models with which our application is going
to interact. At the beginning of this chapter, we identified two main entities, cats
and breeds. Laravel ships with Eloquent, a powerful ORM that lets you define these
entities, map them to their corresponding database tables, and interact with them
using PHP methods rather than raw SQL. By convention, they are written in the
singular form; a model named Cat will map to the cats table in the database,
and a hypothetical Mouse model will map to the mice.

The Cat model, saved inside app/models/Cat.php, will have a belongsTo
relationship with the Breed model, which is defined in the following code snippet:

class Cat extends Eloquent {
 protected $fillable = array('name','date_of_birth','breed_id');
 public function breed(){
 return $this->belongsTo('Breed');
 }
}

Chapter 3

[37]

The $fillable array defines the list of fields that Laravel can fill by mass
assignment, a convenient way to assign attributes to a model. By convention, the
column that Laravel will use to find the related model has to be called breed_id in
the database. The Breed model, app/models/Breed.php is defined with the inverse
hasMany relationship as follows:

class Breed extends Eloquent {
 public $timestamps = false;
 public function cats(){
 return $this->hasMany('Cat');
 }
}

By default, Laravel expects a created_at and updated_at timestamp field in the
database table. Since we are not interested in storing these timestamps with the
breeds, we disable them in the model by setting the $timestamps property to false.

This is all the code that is required in our models for now. We will discover various
other features of Eloquent as we progress in this book; however, in this chapter we
will primarily use two methods: all() and find(). To illustrate their purpose,
here are the SQL queries that they generate:

Breed::all() => SELECT * FROM breeds;
Cat::find(1) => SELECT * FROM cats WHERE id = 1;

In the views and controllers of our application, the properties of an Eloquent model
can be retrieved with the -> operator: $cat->name. The same goes for the properties
of the related models, which are accessible as shown: $cat->breed->name. Behind
the scenes, Eloquent will perform the necessary SQL joins.

Building the database schema
Now that we have defined our models, we need to create the corresponding database
schema. Thanks to Laravel's support for migrations and its powerful schema builder,
you will not have to write any SQL code and you will also be able to keep track of
any schema changes in a version control system. To create your first migration,
open a new terminal window, and enter the following command:

$ php artisan migrate:make add_cats_and_breeds_table

This will create a new migration inside app/database/migrations/. If you open
the newly created file, you will find some code that Laravel has generated for
you. Migrations always have an up() and down() method that defines the schema
changes when migrating up or down. By convention, the table and field names are
written in "snake_case". Moreover, the table names are written in the plural form.

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Your First Application

[38]

Our first migration is going to look like this:

 public function up(){
 Schema::create('cats', function($table){
 $table->increments('id');
 $table->string('name');
 $table->date('date_of_birth');
 $table->integer('breed_id')->nullable();
 $table->timestamps();
 });
 Schema::create('breeds', function($table){
 $table->increments('id');
 $table->string('name');
 });
 }
 public function down(){
 Schema::drop('cats');
 Schema::drop('breeds');
 }

The date() and string() methods create fields with the corresponding types
(in this case, DATE and VARCHAR) in the database, increments() creates an auto
incrementing INTEGER primary key, and timestamps() adds the created_at and
updated_at DATETIME fields that Eloquent expects by default. The nullable()
method specifies that the column can have NULL values.

To run the migration, enter the following command:

$ php artisan migrate

When it is run for the first time, this command will also create a migrations table
that Laravel uses to keep track of the migrations that have been run.

Seeding the database
Rather than manually populating our database, we can use the seeding helpers
offered by Laravel. This time, there is no Artisan command to generate the file,
but all we need to do is create a new class called BreedsTableSeeder.php inside
app/database/seeds/. This class extends Laravel's Seeder class and defines the
following run() method:

class BreedsTableSeeder extends Seeder {
 public function run(){
 DB::table('breeds')->insert(array(
 array('id'=>1, 'name'=>"Domestic"),

Francisco
Resaltado

Francisco
Resaltado

Chapter 3

[39]

 array('id'=>2, 'name'=>"Persian"),
 array('id'=>3, 'name'=>"Siamese"),
 array('id'=>4, 'name'=>"Abyssinian"),
));
 }
}

You can bulk insert an array but you could also insert arbitrary code in the run()
method to load data from a CSV or JSON file. There are also third-party libraries
that can help you generate large amounts of test data to fill your database.

To control the order of execution of the seeders, Laravel lets you call them
individually inside app/database/seeds/DatabaseSeeder.php. In our case,
since we only have one seeder, all we need to write is the line that follows:

$this->call('BreedsTableSeeder');

Then, we can seed the database by calling it using the following command:

$ php artisan db:seed

Mastering Blade
Now that we have some information in our database, we need to define the
templates that are going to display it. Blade is Laravel's lightweight template
language and its syntax is very easy to learn. Here are some examples of how Blade
can reduce the number of keystrokes and increase the readability of your templates:

Standard PHP syntax Blade syntax
<?php echo $var; ?> {{$var}}

<?php echo htmlentities($var); ?> {{{$var}}}

<?php if($cond): ?>…<?php endif; ?> @if($cond) … @endif

You should only use the double braces to output a variable if you trust the user
or the value that is returned. In all other cases, make sure that you use the triple
brace notation to avoid XSS vulnerabilities (explained in a bit more detail in the
next chapter).

Blade supports all of PHP's major constructs to create loops and conditions: @for,
@foreach, @while, @if, and @elseif; therefore, allowing you to avoid opening
and closing the <?php tags everywhere in your templates.

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Your First Application

[40]

Creating a master view
Blade lets you build hierarchical layouts by allowing the templates to be nested and
extended. The following code snippet is the "master" template that we are going to
use for our application. We will save it as app/views/master.blade.php.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Cats DB</title>
 <link rel="stylesheet" href="{{asset('bootstrap-3.0.0.min.
css')}}">
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 @yield('header')
 </div>
 @if(Session::has('message'))
 <div class="alert alert-success">
 {{Session::get('message')}}
 </div>
 @endif
 @yield('content')
 </div>
 </body>
</html>

The Bootstrap 3 CSS framework is included to speed up the prototyping of the
application interface. You can download it from http://getbootstrap.com and
place the minified CSS file inside the public/ folder. To ensure that its path prefix is
set correctly, even when Laravel is run from a subfolder, we use the asset() helper.
In the following template, we will use other helpers such as url and link_to, which
help us write more concise code and also escape from any HTML entities. To
see the complete list of Blade template helpers that are available to you, visit:
http://laravel.com/docs/helpers.

To inform the user about the outcome of certain actions, we have prepared a
notification area between the header and the page content. This flash data (in other
words, the session data that is only available for the next request) is passed and
retrieved to and from the Session object.

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Chapter 3

[41]

The @yield directives act as placeholders for the different sections that a child
view can populate and override. To see how a child template can re-use them, we
are going to recreate the About view by changing its extension to .blade.php and
extending our master template:

@extends('master')
@section('header')
 <h2>About this site</h2>
@stop
@section('content')
 <p>There are over {{$number_of_cats}} cats on this site!</p>
@stop

The @section ... @stop directives delimit the blocks of content that are going
to be injected into the master template. You can see how this is done in the
following diagram:

about.blade.php
@extends(master)

master.blade.php

Messages (if any)

@yield(header)

@yield(content)

@section(header)

@section(section)

If you now reopen the /about route in your web browser, without changing
anything in your previous route definition, you will see the new view. Laravel's
view finder will simply use the new file, and since its name ends with .blade.php,
treat it like a Blade template.

Back to the routes
Now that we have a main template that we can extend and re-use, we can start to
create the individual routes of our application inside app/routes.php, along with
the different views that will display the application data.

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Your First Application

[42]

The overview page
This is the index page that is going to display all of the cats using the cats.index
view. We will also re-use this view for the second route where the cats are filtered by
their breed, since both the routes are almost identical. Note that Laravel expects you
to use the dot notation (cats.index and not cats/index) to refer to a view located
inside a subfolder:

Route::get('cats', function(){
 $cats = Cat::all();
 return View::make('cats.index')
 ->with('cats', $cats);
});

Route::get('cats/breeds/{name}', function($name){
 $breed = Breed::whereName($name)->with('cats')->first();
 return View::make('cats.index')
 ->with('breed', $breed)
 ->with('cats', $breed->cats);
});

The only novelty in these routes are the slightly more-advanced Eloquent queries.
While we already know that the all() method in the first route loads all of the
entries from the cats table, the second route uses a more complex query. The first
method, whereName, is a dynamic method that translates into a WHERE name =
$name SQL query. The with() method loads the related cat models and first()
retrieves the first instance.

The template, saved inside cats/index.blade.php, will look like this:

@extends('master')

@section('header')
 @if(isset($breed))
 {{link_to('/', 'Back to the overview')}}
 @endif
<h2>
 All @if(isset($breed)) {{$breed->name}} @endif Cats

 Add a new cat

</h2>
@stop

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Francisco
Resaltado

Chapter 3

[43]

@section('content')
 @foreach($cats as $cat)
 <div class="cat">
 id)}}">
 {{{$cat->name}}} - {{{$cat->breed->name}}}

 </div>
 @endforeach
@stop

With the help of a foreach loop, the view iterates over the list of cats that it received
from the route. Since we will be using this view to display both the index page
(/cats) as well as the breed overview page (/cats/breeds/breed), we used the
@if directives in two places to conditionally display more information.

Displaying a cat's page
The next route is used to display a single cat. To find a cat by its ID, we use
Eloquent's find() method:

Route::get('cats/{id}', function($id) {
 $cat = Cat::find($id);
 return View::make('cats.single')
 ->with('cat', $cat);
});

Since this is such a common pattern, Laravel provides you with a way to
automatically bind a model to a route and, therefore, make your code shorter
and more expressive. To bind the $cat variable to the Cat model, simply add the
following declaration before your routes:

Route::model('cat', 'Cat');

This allows you to shorten your route and pass a Cat object to it instead:

Route::get('cats/{cat}', function(Cat $cat) {
 return View::make('cats.single')
 ->with('cat', $cat);
});

Your First Application

[44]

The view, cats/single.blade.php, does not contain any new directives. It simply
displays the name of the cat with the links to edit or delete it. In the content section,
we return its age and breed if the breed is set; this is shown in the following snippet:

@extends('master')

@section('header')
 Back to overview
 <h2>
 {{{$cat->name}}}
 </h2>
 id.'/edit')}}">
 Edit

 id.'/delete')}}">
 Delete

 Last edited: {{$cat->updated_at}}
@stop

@section('content')
 <p>Date of Birth: {{$cat->date_of_birth}} </p>
 <p>
 @if($cat->breed)
 Breed:
 {{link_to('cats/breeds/' . $cat->breed->name,
 $cat->breed->name)}}
 @endif
 </p>
@stop

Adding, editing, and deleting cats
The next series of routes and views will be used to create, edit, and delete a cat page.
Since we are going to use the same view for all of the three actions, we pass a method
variable that the form will have to use to complete the action:

Route::get('cats/create', function() {
 $cat = new Cat;
 return View::make('cats.edit')
 ->with('cat', $cat)
 ->with('method', 'post');
});

Chapter 3

[45]

Since we cannot bind a model before it exists, we simply pass a new and empty
instance of a Cat model to the view. For the edit and delete routes, however, we can
take advantage of the route model binding that we introduced earlier, as follows:

Route::get('cats/{cat}/edit', function(Cat $cat) {
 return View::make('cats.edit')
 ->with('cat', $cat)
 ->with('method', 'put');
});

Route::get('cats/{cat}/delete', function(Cat $cat) {
 return View::make('cats.edit')
 ->with('cat', $cat)
 ->with('method', 'delete');
});

The next set of routes will handle the three different types of actions and redirect
the user using a flash data message. This message is then retrieved in the Session
object using Session::get('message') in the master template. Any input data
that is received by the application and that you would normally access via the $_GET
or $_POST variables is instead retrievable using the Input::get() method. It is also
possible to retrieve an array of all the input data with Input::all(). They also use
more features of Eloquent that we have not seen before. The POST /cats and PUT /
cats/{cat} routes, respectively, use the create() and update() methods from
Eloquent with Input::all() as their argument. This is only possible because we
specified the specific fields that are fillable in the Cat model beforehand:

Route::post('cats', function(){
 $cat = Cat::create(Input::all());
 return Redirect::to('cats/' . $cat->id)
 ->with('message', 'Successfully created page!');
});

Route::put('cats/{cat}', function(Cat $cat) {
 $cat->update(Input::all());
 return Redirect::to('cats/' . $cat->id)
 ->with('message', 'Successfully updated page!');
});

Route::delete('cats/{cat}', function(Cat $cat) {
 $cat->delete();
 return Redirect::to('cats')
 ->with('message', 'Successfully deleted page!');
});

Your First Application

[46]

The view used in all those different routes, views/cats/edit.blade.php, will
be slightly more complex since it requires a few additional conditions. However,
it remains more maintainable than the two or three individual files that would be
required to display the different forms to add, edit, or delete a resource. You will
also come across several form helpers, such as Form::label() or Form::text(),
which essentially generate the equivalent HTML code for you.

@extends('master')

@section('header')
 id.'')}}">← Cancel
 <h2>
 @if($method == 'post')
 Add a new cat
 @elseif($method == 'delete')
 Delete {{$cat->name}}?
 @else
 Edit {{$cat->name}}
 @endif
 </h2>
@stop

@section('content')
 {{Form::model($cat, array('method' => $method, 'url'=>
 'cats/'.$cat->id))}}

 @unless($method == 'delete')
 <div class="form-group">
 {{Form::label('Name')}}
 {{Form::text('name')}}
 </div>
 <div class="form-group">
 {{Form::label('Date of birth')}}
 {{Form::text('date_of_birth')}}
 </div>
 <div class="form-group">
 {{Form::label('Breed')}}
 {{Form::select('breed_id', $breed_options)}}
 </div>

 {{Form::submit("Save", array("class"=>"btn btn-default"))}}
 @else
 {{Form::submit("Delete", array("class"=>"btn btn-default"))}}
 @endif

 {{Form::close()}}
@stop

Chapter 3

[47]

In this view, we used another nifty feature of Laravel that lets us bind a model to a
form. This is achieved with the Form::model() method, which expects an instance
of a model as its first parameter. Once a model is bound to a form, any fields that are
displayed are automatically populated based on the contents of the model. This will
be particularly helpful once we add validation to the form.

The Form::select() helper builds a <select> dropdown with the different choices.
It expects the list of choices to be passed to a multidimensional array. Rather than
binding this array to each route, we can use view composers, another feature of
Laravel, which allows you to bind a variable to a specific view each time. To create
your first view composer, simply insert the following lines of code at the bottom of
your app/routes.php file:

View::composer('cats.edit', function($view)
{
 $breeds = Breed::all();
 if(count($breeds) > 0){
 $breed_options = array_combine($breeds->lists('id'),
 $breeds->lists('name'));
 } else {
 $breed_options = array(null, 'Unspecified');
 }
 $view->with('breed_options', $breed_options);
});

With this final touch, the first version of our application is now complete! Anyone
who visits it can create a page for their cat, and edit or delete it.

Summary
We have covered a lot in this chapter. We learned how to define routes, prepare the
models of the application, and interact with them. Moreover, we have had a glimpse
at the many powerful features of Eloquent, Blade, as well as the other convenient
helpers in Laravel to create forms and input fields: all of this in under 200 lines
of code!

In the next chapter, we will learn how to use Laravel's built-in user registration,
authentication, and security features to improve our existing application.

Francisco
Resaltado

Francisco
Resaltado

Authentication and Security
In this chapter, we will improve the application we built in the previous chapter by
adding a simple authentication mechanism and addressing any security issues with
the existing code base. In doing so, you will learn about:

• How to configure and use the Auth class
• Filters and how to apply them to specific routes
• The most common security vulnerabilities in web applications
• How Laravel can help you write more secure code

Authenticating users
Allowing users to register and sign in is an extremely common feature in web
applications. Yet, PHP does not dictate in any way how it should be done, nor does
it give you any helpers to implement it. This has led to the creation of disparate, and
sometimes insecure, methods of authenticating users and restricting access to specific
pages. In that respect, Laravel provides you with different tools to make these
features more secure and easier to integrate. It does so with the help of its Auth
class and a functionality that we have not covered yet, route filters.

Creating the user model
First of all, we need to define the model that is going to be used to represent the
users of our application. Laravel already provides you with sensible defaults inside
app/config/auth.php, where you change the model or table that is used to store
your user accounts.

Authentication and Security

[50]

It also comes with an existing User model inside app/models/User.php. For the
purposes of this application, we are going to simplify it slightly, remove certain
class variables, and add new methods so that it can interact with the Cat model:

use Illuminate\Auth\UserInterface;
class User extends Eloquent implements UserInterface {
 public function getAuthIdentifier() {
 return $this->getKey();
 }
 public function getAuthPassword() {
 return $this->password;
 }
 public function cats(){
 return $this->hasMany('Cat');
 }
 public function owns(Cat $cat){
 return $this->id == $cat->owner;
 }
 public function canEdit(Cat $cat){
 return $this->is_admin or $this->owns($cat);
 }
}

The first thing to note is that this model implements the UserInterface.
Remember that an interface does not give any implementation details. It is nothing
more than a contract that specifies the names of the methods that a class should
define when it implements the interface, in this case, getAuthIdentifier()
and getAuthPassword(). These methods are used internally by Laravel when
authenticating a user. The next method, cats(), simply defines the has many
relationship with the Cat model. The last two methods will be used to check
whether a given Cat instance is owned or editable by the current User instance.

Creating the necessary database schema
Now that we have defined a User model, we need to create the database schema
for it and alter the existing cats table to add information about the owner. Start by
creating a new migration:

$ php artisan migrate:make create_users

And then define the up method with the necessary database columns:

public function up(){
 Schema::create('users', function($table){
 $table->increments('id');

Chapter 4

[51]

 $table->string('username');
 $table->string('password');
 $table->boolean('is_admin');
 $table->timestamps();
 });

Schema::table('cats', function($table){
 $table->integer('user_id')->nullable()->references('id')-
 >on('users');
});
}

With the preceding code, we create a new table for the users of our application.
This table has a username, a password, and a flag to indicate whether the user is an
administrator. We have also altered the existing cats table to add a user_id column
that stores id of the owner of Cat. This time, we are also using the references and
on methods that are used to create a foreign key constraint in the table. Foreign keys
help you to enforce the consistency of data (for example, you would not be able to
assign Cat to a non-existent user).

The code to reverse this migration will simply have to remove the foreign key
constraint and the column and then drop the users table:

public function down(){
 Schema::table('cats', function($table){
 $table->dropForeign('cats_user_id_foreign');
 $table->dropColumn('user_id');
 });
 Schema::drop('users');
}

Next, we prepare a database seeder to create two users for our application, one of
which will be an administrator.

class UsersTableSeeder extends Seeder {
 public function run(){
 User::create(array(
 array('username' =>'admin',
 'password' => Hash::make('hunter2'), 'is_admin' => true));

 User::create(array(
 'username' =>'scott', 'password' => Hash::make('tiger'),
 'is_admin' => false)
));
 }
}

Authentication and Security

[52]

Once you have saved this code inside a new file named app/database/seeds/
UsersTableSeeder.php, do not forget to call it inside the main DatabaseSeeder class.

Laravel expects all passwords to be hashed with the Hash::make
helper, which uses Bcrypt to create a strong hash. You should never
store passwords in cleartext or hash them with weak algorithms, such
as md5 or sha1.

To run the migration and seed the database at the same time, enter:

$ php artisan migrate && php artisan db:seed

Authentication routes and views
Let's now look at the new routes and views. We will start by making some amends to
the master layout (app/views/master.blade.php) to display the login link to guests
and the logout link to users who are logged in. To check whether a visitor is logged
in, we use the Auth::check() method:

<div class="container">
 <div class="page-header">
 <div class="text-right">
 @if(Auth::check())
 Logged in as
 {{{Auth::user()->username}}}
 {{link_to('logout', 'Log Out')}}
 @else
 {{link_to('login', 'Log In')}}
 @endif
 </div>
 @yield('header')
 </div>
 @if(Session::has('message'))
 <div class="alert alert-success">
 {{Session::get('message')}}
 </div>
 @endif

 @if(Session::has('error'))
 <div class="alert alert-warning">
 {{Session::get('error')}}
 </div>
 @endif
 @yield('content')
</div>

Chapter 4

[53]

This code replaces the contents of the <body> tag in our previous template file.
A section for any error messages was also included below the header.

The route to display this login form could not be easier:

Route::get('login', function(){
 return View::make('login');
});

If you were curious as to where and why Laravel uses the make methods
in various places, it is only there to maintain PHP 5.3 compatibility, which
does not support class member access on instantiation, and therefore, does
not let you write return new View('login');.

The route that handles login attempts will simply pass the username and password
input values to the Auth::attempt method. When this method returns true, we
simply redirect the visitor to the intended location. If this fails, we redirect the user
back to where he came from with Redirect::back() with the input values and an
error message.

Route::post('login', function(){
 if(Auth::attempt(Input::only('username', 'password'))) {
 return Redirect::intended('/');
 } else {
 return Redirect::back()
 ->withInput()
 ->with('error', "Invalid credentials");
 }
});

But how does Laravel know what our intended location was? If you open
app/filters.php and look at the auth filter, you will see that it redirects guests
to the login route with the Redirect::guest() method. This method stores the
requested path in a session variable, which is then used by the intended() method.
The parameter passed to this method is the fallback route to which users should be
redirected if there is no request path in the session information.

Note also that there is a filter called guest that does the opposite of
auth; you could use it on the login route if you wanted to prevent
logged-in users from accessing it. With this filter in place, logged-in users
will be redirected to the home page instead. You can change this behavior
inside app/filters.php.

Authentication and Security

[54]

The login view, inside app/views/login.blade.php, is a simple form:

@extends('master')
@section('header')<h2>Please Log In</h2>@stop
@section('content')
 {{Form::open()}}
 <div class="form-group">
 {{Form::label('Username')}} {{Form::text('username')}}
 </div>
 <div class="form-group">
 {{Form::label('Password')}} {{Form::password('password')}}
 </div>
 {{Form::submit()}}
 {{Form::close()}}
@stop

Here is what the login form, as well as the updated master template, will look like:

Chapter 4

[55]

The last route we need to create is the one that is going to handle the logout action.
All it needs to do is call Auth::logout() and then redirect the user to the home page
with a message:

Route::get('logout', function(){
 Auth::logout();
 return Redirect::to('/')
 ->with('message', 'You are now logged out');
});

Then, we need to wrap the routes that require authentication inside a route group
the following:

Route::group(array('before'=>'auth'), function(){
 Route::get('cats/create', function(){...});
 Route::post('cats', function(){...});
 ...
});

Every request to these routes will first execute the auth filter. We also need to protect
the PUT and POST routes by adding a condition that checks whether the currently
logged-in user is allowed to edit the page:

Route::put('cats/{cat}', function(Cat $cat) {
 if(Auth::user()->canEdit($cat)){
 $cat->update(Input::all());
 return Redirect::to('cats/' . $cat->id)
 ->with('message', 'Successfully updated profile!');
 } else {
 return Redirect::to('cats/' . $cat->id)
 ->with('error', "Unauthorized operation");
 }
});

In the views, we can use the following condition to determine whether or not a user
should see the edit and delete links:

@if(Auth::check() and Auth::user()->canEdit($cat))
 Edit link | Delete link
@endif

Authentication and Security

[56]

Lastly, we need to alter the POST/cats route to make sure we save the identifier of
the current user when a new Cat instance is created:

Route::post('cats', function(){
 $cat = Cat::create(Input::all());
 $cat->user_id = Auth::user()->id;
 if($cat->save()){
 return Redirect::to('cats/' . $cat->id)
 ->with('message', 'Successfully created profile!');
 } else {
 return Redirect::back()
 ->with('error', 'Could not create profile');
 }
});

The call to $cat->save() returns either true if the object was inserted into
the database or false if there was an error, so that we can use it to redirect
the user accordingly.

Validating user input
Our application still has a major flaw: it does not perform any validation on the data
submitted by users. While you might end up with a series of conditions with regular
expressions here and there if you were to do this in plain PHP, Laravel offers a far
more straightforward and robust way to achieve this.

Validation is performed by passing an array with the input data and an array with
the validation rules to the Validator::make($data, $rules) method. In the case
of our application, here are the rules we could write:

$rules = array(
 'name' => 'required|min:3', // Required, > 3 characters
 'date_of_birth' => array('required, 'date') // Must be a date
)

Multiple validation rules are separated by pipes, but they can also be passed in
an array. Laravel provides over 30 different validation rules, and they are all
documented in here:

http://laravel.com/docs/validation#available-validation-rules

Here is how we would check these rules with the data submitted in the form:

$validation_result = Validator::make($rules, Input::all());

Chapter 4

[57]

You can then make your application act based on the output of $validation_
result->fails(). If this method call returns true, you would retrieve an object
containing all error messages with $validation_result->messages(), and this
object is attached to a redirection that sends the user back to the form:

return Redirect::back()
 ->with('messages', $validation_result->messages());

Since each field can have zero or more validation errors, you would use a condition
and a loop with the following methods to display those messages:

if($messages->has('name')){
 foreach ($messages->get('name') as $message){
 echo $message;
 }
}

You may also use a tool such as Ardent, which extends Eloquent and lets you to
write validation rules directly inside the model:

https://github.com/laravelbook/ardent

Securing your application
Before you deploy your application in a hostile environment, full of merciless bots
and malicious users, there are a number of security considerations that you must
keep in mind. In this section, we are going to cover several common attack vectors
for web applications and learn about how Laravel protects your application against
them. Since a framework cannot protect you against everything, we will also look at
the common pitfalls to avoid.

Cross-site request forgery
Cross-site request forgery (CSRF) attacks are conducted by targeting a URL that has
side-effects (that is, it is performing an action and not just displaying information).
We have already partly mitigated CSRF attacks by avoiding the use of GET for routes
that have permanent effects such as DELETE/cats/1, since it is not reachable from a
simple link or embeddable in an <iframe> element. However, if an attacker is able
to send his victim to a page that he controls, he can easily make the victim submit a
form to the target domain. If the victim is already logged in on the target domain,
the application would have no way of verifying the authenticity of the request.

Authentication and Security

[58]

The most efficient countermeasure is to issue a token whenever a form is
displayed and then check that token when the form is submitted. Form::open
and Form::model both automatically insert a hidden _token input element.

Our application in its current form has several vulnerable endpoints. First of all, all
the URLs that handle user input are not checking this CSRF token. To address this,
we will group the POST, PUT, and DELETE routes inside their own route group with a
csrf filter:

Route::group(array('before'=>'csrf'), function(){ ...});

We can also protect the individual GET routes by adding the token in the URL with
the csrf_token() function:

Log out

To attach a filter to an individual route, simply turn the second parameter of the
route into an array, and add the name of the filter:

Route::get('logout', array('before'=>'csrf', function(){...}));

Multiple filters can be passed as a string separated by the pipe symbol:

Route::get('foo', array('before'=>'auth|csrf', function(){...});

Escaping content to prevent cross-site
scripting – XSS
XSS attacks happen when attackers are able to place client-side JavaScript code in a
page viewed by other users. In our application, assuming that the name of Cat has
not escaped, if we enter the following snippet of code as the value for the name, every
visitor will be greeted with an alert message everywhere the name of Cat is displayed:

Evil Cat <script>alert('Meow!')</script>

While this is a rather harmless script, it would be very easy to insert a longer
script or link to an external script that steals the session or cookie values. To avoid
this kind of attack, you should never trust any user-submitted data or escape any
dangerous characters. To do this, simply wrap your variables in three curly braces
in your Blade templates.

{{{$cat->name}}}

Instead of executing the script, this time the <script> tag is displayed on the page
since the angle brackets have escaped and displayed with their HTML entities (<
and >).

Chapter 4

[59]

Avoiding SQL injection
An SQL injection vulnerability exists when an application inserts arbitrary and
unfiltered user input in an SQL query. This user input can come from cookies, server
variables, or, most frequently, through GET or POST input values. These attacks are
conducted to access or modify data that is not normally available and sometimes to
disturb the normal functioning of the application.

By default, Laravel will protect you against this type of attack since both the query
builder and Eloquent use PHP's Data Objects class (PDO) behind the scenes. PDO
uses prepared statements, which allow you to safely pass any parameters without
having to escape and sanitize them.

In some cases, you might want to write more complex or database-specific queries in
SQL. This is possible using the DB::raw method. When using this method, you must
be very careful not to create any vulnerable queries like the following one:

Route::get('sql-injection-vulnerable', function(){
 $name = "'Bobby' OR 1=1";
 return DB::select(
 DB::raw("SELECT * FROM cats WHERE name = $name"));
});

To protect this query from SQL injection, you need to rewrite it by replacing the
parameters with question marks in the query and then pass the values in an array
as a second argument to the raw method:

Route::get('sql-injection-not-vulnerable', function(){
 $name = "'Bobby' OR 1=1";
 return DB::select(
 DB::raw("SELECT * FROM cats WHERE name = ?", array($name)));
});

Using mass-assignment with care
In the previous chapter, we used mass-assignment, a convenient feature that
allows us to create a model based on the form input without having to assign
each value individually.

This feature should, however, be used carefully. A malicious user could alter the
form on the client side and add a new input to it:

<input name="admin" value="1" >

Then, when the form is submitted and we attempt to create a new model using:

Cat::create(Input::all())

Authentication and Security

[60]

Thanks to the $fillable array, which defines a white list of fields that can be filled
through mass assignment, this method call will throw a mass-assignment exception.

It is also possible to do the opposite and define a blacklist with the $guarded
property. However, this option can be potentially dangerous since you might
forget to update it when adding new fields to the model.

Cookies – secure by default
Laravel makes it very easy to create, read, and expire cookies with its Cookie class.

You will also be pleased to know that all cookies are automatically signed and
encrypted. This means that if they are tampered with, Laravel will automatically
discard them. This also means that you will not be able to read them from the client
side using JavaScript.

Forcing HTTPS when exchanging sensitive
data
If you are serving your application over HTTP, you need to bear in mind that every
bit of information that is exchanged, including passwords, is sent in cleartext. An
attacker on the same network could therefore intercept private information, such as
session variables, and log in as the victim. The only way we can prevent this is to use
HTTPS. If you already have an SSL certificate installed on your web server, Laravel
comes with a number of helpers to switch between http:// and https:// and
restrict access to certain routes. You can, for instance, define an https filter that will
redirect the visitor to the secure route as shown in the following code snippet:

Route::filter('https', function() {
 if (!Request::secure())
 return Redirect::secure(URI::current());
});

Summary
In this chapter, we have learned how to make use of many of Laravel's tools to add
authentication features to a website, validate data, and avoid common security
problems. In the next chapter, we will cover another important aspect of modern
web applications: testing, which is another area where Laravel shines.

Testing – It's Easier Than
You Think

Testing is an often-neglected part in PHP development. Compared to languages such
as Java and Ruby, where testing is strongly ingrained into the mindsets of developers,
PHP has been lagging behind. This is mainly because simple PHP applications
tend to be tightly coupled and are, therefore, difficult to test. However, thanks to
standardization and modularization efforts and frameworks that encourage the
separation of concerns, PHP testing has become more accessible and the mentality
towards it is slowly changing.

Laravel 4 is a framework that was built from the ground up to facilitate testing. It
comes with all the necessary files to get started along with different helpers to test
your application, thus helping beginners to overcome some of the biggest obstacles.

In this chapter, we will demonstrate how Laravel makes it very simple to get started
with testing without forcing you to go for a test-first approach, or making you aim
for a complete test coverage. In this gentle introduction to testing, we will look at the
following topics:

• The advantages of writing tests for your application
• How to prepare your tests
• The software design patterns that Laravel fosters
• How to use Mockery to test objects in isolation
• The built-in features and helpers that facilitate testing

Testing – It’s Easier Than You Think

[62]

The benefits of testing
If you have not written tests for your web applications before, the advantages
of testing might not always be obvious to you. After all, preparing and writing
tests is a significant time investment, and for short-lived prototypes or hackathon
projects, they can even seem to be a complete waste of time. However, in almost all
of the other cases, when your project is likely to grow in complexity, or when you
collaborate with other developers, tests have the potential to save you and other
people a lot of time and headaches.

Tests also introduce some changes to your workflow. In the development stage,
you will no longer have to switch back and forth between your code editor and your
web browser. Instead, if you bind the test runner to a keyboard shortcut, most of the
testing will take place inside your editor or IDE.

Once you have proven that a certain bit of functionality works, you will have
a way of quickly ensuring that it continues to work as expected if the source
code is changed at a later date. In addition to this, it forces you to clearly and
unambiguously define the expected behavior of your application and can
therefore complement or replace a significant part of the documentation. This
can be particularly helpful, not only for new developers who start collaborating
on the project, but also for yourself, if you have not touched the project for a while.

The anatomy of a test
Your application tests will reside in app/tests/. In this directory, you will find
a base test case inside TestCase.php, which is responsible for bootstrapping the
application in the testing environment. This class extends Laravel's main TestCase
class, which in turn extends the PHPUnit_Framework_TestCase class along with
many helpful testing methods that we will cover later in this chapter. All of your
tests will extend this first TestCase class and define one or more methods that are
meant to test one or more features of your application.

In every test, we generally perform the following three distinct tasks:

1. We arrange or initialize some data.
2. We execute a function to act on this data.
3. We assert or verify that the output matches what we expected.

Chapter 5

[63]

Here is an example test case, HelperTest.php, which illustrates the three
preceding steps:

class Helper {
 public static function sum($arr){ return array_sum($arr); }
}
class HelperTest extends PHPUnit_Framework_TestCase{
 public function testSum(){
 $data = array(1,2,3); // 1) Arrange
 $result = Helper::sum($data); // 2) Act
 $this->assertEquals(6, $result); // 3) Assert
 }
 public function testSomethingElse(){
 // ...
 }
}

When the preceding code snippet is executed, PHPUnit will run each method within
the test case and keep track of how many tests failed or passed. With PHPUnit
installed on your system, you can run this test using the following command:

$ phpunit --colors HelperTest.php

This will produce the following output:

Most code editors also provide ways to run this directly within the
editor by pressing a shortcut key, and it is even possible to run them
automatically before each commit or before you deploy your code to a
remote server.

Testing – It’s Easier Than You Think

[64]

Unit testing with PHPUnit
A positive effect of testing is that it forces you to split your code into manageable
dependencies so you can test them in isolation. The testing of these individual classes
and methods is referred to as unit testing. Since it relies on the PHPUnit testing
framework, which already provides a large number of tools to set up test suites,
Laravel does not need to provide any additional helpers for this type of testing.

A great way to learn about any framework, and at the same time learn about the
different ways in which it can be tested, is to look at how its authors have written
tests for it. Therefore, our next examples will be taken directly from Laravel's test
suite, which is located at vendor/laravel/framework/tests/.

Defining what you expect with assertions
Assertions are the fundamental components of unit tests. Simply put, they are used
to compare the expected output of a function with its actual output.

To see how assertions work, we will examine the test for the Str::is() helper,
which checks whether a given string matches a given pattern.

The following test can be found at the bottom of the Support/SupportStrTest.php
file:

use Illuminate\Support\Str;
class SupportStrTest extends PHPUnit_Framework_TestCase {
 // ...
 public function testIs()
 {
 $this->assertTrue(Str::is('/', '/'));
 $this->assertFalse(Str::is('/', ' /'));
 $this->assertFalse(Str::is('/', '/a'));
 $this->assertTrue(Str::is('foo/*', 'foo/bar/baz'));
 $this->assertTrue(Str::is('*/foo', 'blah/baz/foo'));
 }
}

The preceding test performs five assertions that test whether the method is indeed
returning the expected value when called with different parameters.

Chapter 5

[65]

PHPUnit provides many other assertion methods that can, for example, help you test
for numerical values with assertGreaterThan(), equality with assertEquals(),
types with assertInstanceOf(), or existence with assertArrayHasKey(). While
there are many more possible assertions, these are the ones you will probably
end up using most frequently. In total, PHPUnit provides around 40 different
assertion methods, all of which are described in the official documentation at
http://phpunit.de/manual/.

Preparing the scene and cleaning up objects
If you need to run a function before each test method to set up some test data or
reduce code duplication, you can use the setUp() method. If, on the other hand,
you need to run some code after each test to clear any objects that were instantiated
in your tests, you can define it inside the tearDown() method.

Expecting exceptions
It is also possible to test for exceptions by decorating your function with
an @expectedException DocBlock, like Laravel does inside Database/
DatabaseEloquentModelTest.php:

/**
 * @expectedException Illuminate\Database\Eloquent\
MassAssignmentException
 */
public function testGlobalGuarded()
{
 $model = new EloquentModelStub;
 $model->guard(array('*'));
 $model->fill(array('name' => 'foo', 'age' => 'bar',
 'votes' => 'baz'));
}

In this test function, there is no assertion, but the code is expected to throw an
exception when it is executed. Also note the use of an EloquentModelStub object.
A stub creates an instance of an object that provides or simulates the methods that
our class needs—in this case, an Eloquent model on which we can call the guard()
and fill() methods. If you look at the definition of this stub further down in the
test, you will see that it does not actually interact with a database but it provides
canned responses instead.

Testing – It’s Easier Than You Think

[66]

Testing interdependent classes in isolation
In addition to stubs, which we looked at in the previous section, there is another
way in which you can test one or more interdependent classes in isolation. It is by
using mocks. In Laravel, mocks are created using the Mockery library, and they
help define the methods that should be called during the test, the arguments they
should receive, and their return values as well. Laravel heavily relies on mocks in its
own tests. An example can be found in the tests for the Paginator class where the
pagination Environment class is mocked. This class is responsible for interfacing the
view with the current HTTP request.

use Illuminate\Pagination\Paginator;

class PaginationPaginatorTest extends PHPUnit_Framework_TestCase {

 public function tearDown(){
 Mockery::close();
 }

 public function testPaginationContextIsSetupCorrectly(){
 $p = new Paginator(
 $env = Mockery::mock('Illuminate\Pagination\Environment'),
 array('foo', 'bar', 'baz'), 3, 2);

 $env->shouldReceive('getCurrentPage')
->once()->andReturn(1);
 $p->setupPaginationContext();

 $this->assertEquals(2, $p->getLastPage());
 $this->assertEquals(1, $p->getCurrentPage());
 }
}

As opposed to stubs, mocks allow us to define which methods need to be called, how
many times they should be called, which parameters they should receive, and which
parameters they should return. If any of these preconditions are not met, the test
will fail.

In the previous example, the getCurrentPage() method is called when the
pagination context is set up. This method will call getCurrentPage() on the
mocked Environment class, which will always return 1 instead of retrieving this
value from the request query string (for example, ?page=2).

Chapter 5

[67]

To ensure that we do not have an instance of a mocked object that persists and
interferes with future tests, Mockery provides a close() method that needs
to be executed after each test. Thanks to this mock, the class can be tested in
complete isolation.

End-to-end testing
When we are confident that all of the interdependent classes work as expected, we
can conduct another type of testing. It consists of simulating the kind of interaction
that a user would have through a web browser. This user would, for example, visit a
specific URL, perform certain actions, and expect to see some kind of feedback from
the application.

This is perhaps the most straightforward type of testing, as it mimics the kind of
testing that you manually perform each time you refresh your browser after a code
change. When you get started, it is absolutely fine to only perform this type of
testing. However, you must bear in mind that if any errors occur, you will still have
to drill deep down into your code to find the exact component that caused the error.

Testing – batteries included
When you start a new project with Laravel, you are provided with both a
configuration file with sensible defaults for PHPUnit at the root of the project
inside phpunit.xml as well as a directory, app/tests/, where you are expected
to save your tests. This directory even contains an example test that you can use
as a starting point.

With these settings in place, from the root of our project, all we need to enter is:

$ phpunit

This command will read the XML configuration file and run our tests. If at this
stage you get an error message telling you that PHPUnit cannot be found, you
either need to add the phpunit command to your PATH variable or install it locally
with Composer.

If you need to install it via Composer, you can insert it in a require-dev block as
follows, since it is only a development dependency:

 "require-dev": {
 "phpunit/phpunit": "3.7.*"
 }

Testing – It’s Easier Than You Think

[68]

After running composer update, you will be able to call PHPUnit using the
following command:

$ vendor/bin/phpunit

Framework assertions
Now that we know about the two major types of tests and have PHPUnit installed,
we are going to write a few tests for the application that we developed in the
previous two chapters.

This first test will verify whether visitors are redirected to the correct page when they
first visit our site:

 public function testHomePageRedirection() {
 $this->call('GET', '/');
 $this->assertRedirectedTo('cats');
 }

Here, we made use of the call() method that simulated a request to our application.
Then we used one of the assertion methods provided by Laravel to make sure
that the response is a redirection to the new location. If you now run the phpunit
command, you should see the following output:

OK (1 test, 2 assertions)

Next, we can try to write a test to make sure that the creation form is not accessible to
the users that are not logged in; this is shown in the following code snippet:

 public function testVisitorIsRedirected() {
 $this->call('GET', '/cats/create');
 $this->assertRedirectedTo('login');
 }

Unfortunately, this time the test will fail. This is because Laravel does not apply
filters on routes when they are called from within the testing environment. This
is entirely intentional; it encourages you to test the filter and the action that
uses it in isolation. However, it is possible to override this behavior. By calling
Route::enableFilters() in our test's setUp() method, we can tell Laravel
that it has to apply the filters regardless.

Chapter 5

[69]

Impersonating users
Sometimes, you may wish to run a test as if you were a registered user of the
application. This is possible by using the be() method and passing a User instance
to it or whichever Eloquent model you use along with Laravel's authentication class:

 public function testLoggedInUserCanCreateCat() {
 Route::enableFilters();
 $user = new User(array('name'=>'John Doe',
 'is_admin'=>false));
 $this->be($user);
 $this->call('GET', '/cats/create');
 $this->assertResponseOk();
 }

Testing with a database
While some developers would advise you against writing tests that hit the database,
it can often be a simple and effective way of making sure that all the components
work together as expected. However, it should only be done once each individual
unit has been tested. Let's also not forget that Laravel has support for migrations and
seeding; in other words, it has all of the tools that are required to recreate an identical
data structure from scratch before each test.

To write tests that depend on a database, we need to override the setUp() method in
our tests to migrate and seed the database each time a test is run. It is also important
to run the parent setUp() method, otherwise, the test case will not be able to
start properly:

 public function setUp(){
 parent::setUp();
 Artisan::call('migrate');
 $this->seed();
 }

Then, we need to configure the database in the testing environment, app/config/
testing/database.php; if the application does not contain any database-specific
queries, we can use SQLite's in-memory feature by setting :memory: instead of a
path to the database file. The following configuration also has the potential to speed
up our tests:

'sqlite' => array(
 'driver' => 'sqlite',
 'database' => ':memory:',
),

Testing – It’s Easier Than You Think

[70]

And lastly, since we are going to test the editing and deletion features, we are going
to need at least one row in the cats table of our database, so we prepare a seeder that
will insert a cat with a forced id of value 1:

class CatsTableSeeder extends Seeder {
 public function run(){
 Cat::create(array('id'=>1, 'name'=>'Figaro', 'user_id'=>1));
 }
}

Once this is done, we can test the deletion feature as follows:

public function testOwnerCanDeleteCat() {
 $user = new User(array('id'=>1, 'name'=>'User #1', 'is_
admin'=>false));
 $this->be($user);
 $this->call('DELETE', '/cats/1');
 $this->assertRedirectedTo('/cats');
 $this->assertSessionHas('message');
}

Note that this time, we did not need to enable the filters since the permissions are
checked by a method in the User model. Since the database is wiped and reseeded
after each test, we do not need to worry about the fact that the previous test deleted
that particular cat. We can also write a test to ensure that a user who is not an
administrator cannot edit someone else's cat profile:

public function testNonAdminCannotEditCat() {
 $user = new User(array('id'=>2, 'name'=>'User #2', 'is_
admin'=>false));
 $this->be($user);
 $this->call('DELETE', '/cats/1');
 $this->assertRedirectedTo('/cats/1');
 $this->assertSessionHas('error');
}

Chapter 5

[71]

Inspecting the rendered views
Since Laravel ships with Symfony's DomCrawler and CssSelector components, it is
possible to inspect the contents of a rendered view. By issuing a request through the
test client instance with $this->client->request(), you can filter its contents with
CSS queries as follows:

public function testAdminCanEditCat() {
 $user = new User(array('id'=>3, 'name'=>'Admin',
'is_admin'=>true));
 $this->be($user);
 $new_name = 'Berlioz';
 $this->call('PUT', '/cats/1', array('name' => $new_name));
 $crawler = $this->client->request('GET', '/cats/1');
 $this->assertCount(1, $crawler
 ->filter('h2:contains("'.$new_name.'")'));
}

The complete documentation for the DomCrawler component can be found at
http://symfony.com/doc/current/components/dom_crawler.html. If you
are already familiar with jQuery, its syntax will look familiar to you.

Summary
While the main ideas behind testing are easy to grasp, it is often their
implementation that can prove to be an obstacle, especially when working with
a new framework. However, after reading this chapter, you should have a good
overview of how you can test your Laravel applications. The techniques presented
in this chapter will enable you to write more robust and future-proof applications.

In the next chapter, we will explore the possibilities offered by Artisan, Laravel's
command-line utility.

A Command-line Companion
Called Artisan

In the last few chapters we have used Artisan for various tasks, such as starting a
development server and running database migrations. However, as we will see in
this chapter, Laravel's command-line utility has far more capabilities and can be used
to run and automate all sorts of tasks. In the next pages, you will learn how Artisan
can help you:

• Inspect and interact with your application
• Enhance the overall performance of your application
• Install and use third-party commands released by the community
• Speed up your workflow by using generators
• Automate and ease deployment
• Write your own commands

By the end of this tour of Artisan's capabilities, you will understand how it can
become an indispensable companion in your workflow.

Keeping up with the latest changes
New features are constantly added to Laravel. If a few days have passed since you
first installed it, try running a composer update from your terminal. Provided you
are using the dev-master version, you should see the latest versions of Laravel and
its dependencies being downloaded. Since you are already in the terminal, finding
out about the latest features is just one command away:

$ php artisan changes

A Command-line Companion Called Artisan

[74]

This saves you from going online to find a change log or reading through a long
history of commits on GitHub. It can also help you learn about features that you
were not aware of. You can also find out which version of Laravel you are running
by entering the following:

$ php artisan --version
Laravel Framework version 4.1-dev

All Artisan commands have to be run from your project's
root directory.
With the help of a short script like Artisan Anywhere,
available at https://github.com/antonioribeiro/
artisan-anywhere, it is also possible to run artisan from
any subfolder in your project.

Inspecting and interacting with your
application
With the routes command, you can see at a glance as to which URLs your
application will respond to, what their names are, and if any filters will be applied
before and after each request. This is probably the quickest way to get acquainted
with a Laravel application that someone else has built.

To display a table with all the routes, all you have to do is enter:

$ php artisan routes

For example, here is how the application we built in Chapter 3, Your First Application
looks like:

Chapter 6

[75]

In some applications, you might see /{v1}/{v2}/{v3}/{v4}/
{v5} appended to particular routes. This is because the developer has
registered a controller with implicit routing, and Laravel will try to
match and pass up to five parameters to the controller. We will look at
controllers more closely in the next chapter and see why it is better to
define routes explicitly.

Fiddling with the internals
When developing your application, you will sometimes need to run short, one-off
commands to inspect the contents of your database, insert some data into it, or check
the syntax and results of an Eloquent query. One way you could do this is by creating
a temporary route with a closure that is going to trigger these actions. However, this
is less than practical since it requires you to switch back and forth between your code
editor and your web browser.

To make these small changes easier, Artisan provides a command called tinker,
which boots up the application and lets you interact with it. Just enter:

$ php artisan tinker

This will start a Read-Eval-Print Loop (REPL) similar to what you get when running
the php -a command, which starts an interactive shell. In this REPL, you can enter
PHP commands in the context of the application and immediately see their output:

> $cat = 'Garfield';

> Cat::create(array('name'=>$cat,'date_of_birth'=>new DateTime));

> echo Cat::whereName($cat)->get();

[{"id":"4","name":"Garfield 2","date_of_birth":…}]

> var_dump(Config::get('database.default'));

> string(6) "sqlite"

As of Version 4.1, Laravel leverages Boris, a PHP-specific REPL that provides a more
robust shell with support keyboard shortcuts and history. However, since Boris only
supports POSIX compliant systems, Laravel will fall back to a more basic shell if you
are running it on Windows.

A Command-line Companion Called Artisan

[76]

Turning the engine off
Whether it is because you are upgrading a database or waiting to push a fix for a
critical bug to production, you may want to manually put your application on hold
to avoid serving a broken page to your visitors. You can do this by entering:

$ php artisan down

This will put your application into maintenance mode. To define what happens
when a visitor lands on your application when it is in this state, simply edit the
App:down handler inside app/global/start.php to add a custom message,
render a view, or redirect the user. To exit the maintenance mode, simply run:

$ php artisan up

Fine-tuning your application
For every incoming request, Laravel has to load many different classes and this can
slow down your application, particularly if you are not using a PHP accelerator such
as APC, eAccelerator, or XCache. In order to reduce disk I/O and shave off precious
milliseconds from each request, you can run:

$ php artisan optimize

This will trim and merge many common classes into one single file located inside
bootstrap/compiled.php. The optimize command is something you could, for
example, include in a deployment script.

By default, Laravel will not compile your classes if app.debug is set to
true. You can override this by adding the --force flag to the command
but bear in mind that this will make your error messages less readable.

Installing third-party commands
We will see later in this chapter that it is very easy to create your own Artisan
commands to automate recurring tasks. Moreover, the more common this task is, the
more likely it will be that someone else has already written a command for it. Indeed,
the Laravel community is coming up with many extremely useful commands and we
are going to discuss a few here.

Chapter 6

[77]

Speeding up your workflow with generators
As you add more and more features to an existing codebase or create new
applications, you will find yourself writing similar code over and over again.
Whether it is a migration class or a form to edit a model, the underlying code
will have a fair bit of boilerplate.

Luckily, Jeffrey Way, a tutorial author and prominent member of the Laravel
community, has created a suite of generators to automate the creation of these
classes. Greatly inspired by what you could find in a framework like Ruby on
Rails, these generators facilitate the creation of migrations, seeds, models, views,
controllers, tests, and forms.

Rather than manually copying and pasting classes from another project or from
the documentation, they allow you to directly create all the necessary files in the
right locations.

To install the generators package, simply run:

$ composer require way/generators:dev-master --dev

This will add the dependency to the require-dev block in your package.json file
and download the package to your vendor/ directory.

To enable the commands in Artisan, you have to open app/config/app.php
and add Way\Generators\GeneratorsServiceProvider to the array of service
providers. Although we have not covered service providers before, just think of
them as a way of rapidly enabling or disabling features in your application. They
are used to register classes that are used in your application or, in our case, new
Artisan commands.

Once this is done, to see the full list of available generators from the terminal, run:

$ php artisan

Each generator will also tell you the parameters it expects if you call it without any
arguments. Here is an example of the output of the form command when it does not
receive any arguments:

$ php artisan generate:form

 [RuntimeException]

 Not enough arguments.

generate:form [--method[="..."]] [--html[="..."]] model

A Command-line Companion Called Artisan

[78]

Generating migrations
To demonstrate the power of generators, we will use the generate:migration
command to recreate the database migrations we created in Chapter 3, Your
First Application.

$ php artisan generate:migration create_cats_table
--fields="name:string, date_of_birth:date:nullable"

This is all it takes! If you now open app/database/migrations, you will find
the newly created migration file, which is practically identical to the one you
wrote previously.

Provided you name your migrations according to certain conventions, the migration
will be set up to either create a new table, add a column, or delete it. The generator
understands the following keyword prefixes:

• create or add to create a table:
$php artisan generate:migration create_foo_table

• add or insert to add a field:
$php artisan generate:migration add_bar_to_foo_table --
 fields="bar:text"

• remove, drop, or delete to remove a field:
$php artisan generate:migration drop_bar_from_foo_table --
 fields="bar:text"

Note that in the last example, even though we are dropping a field, we are still
passing a value to the --fields parameter to guarantee that the down method
reverts the migration as expected.

Generating HTML forms
With generate:form, you can instantaneously produce the necessary HTML
markup for a form for a given model:

$ php artisan generate:form user

The generator will even perform some database introspection and automatically
pick an adequate field type for each property; <textarea> for text fields, <input
type="checkbox"> for booleans, and a standard <input type="text"> parameter
for almost all the other fields. Even though the markup might require some tweaking
before being included in your views, this can greatly speed up your workflow.

Chapter 6

[79]

Generating everything else
Jeffrey Way's package also offers several other generators, which will not be covered
in this book since their use is relatively straightforward and comparable to the
two generators presented. The author is also constantly improving the package
and chances are high that new generators will have emerged since this book was
published. Make sure you visit https://github.com/JeffreyWay/Laravel-4-
Generators to find out about the entire list of generators and some instructions on
how to use them.

Deploying with a single command
If you have used languages like Ruby or Python, you might have used deployment
tools such as Capistrano or Fabric. Up to this day, these tools are used even by PHP
developers since there was no robust equivalent written in pure PHP. However, with
the advent of tools like Rocketeer, it is now possible to write deployment scripts
exclusively with PHP and, therefore, reduce the learning curve as well as the number
of external dependencies.

Fully compatible with Laravel 4.1 but also usable with Version 4.0 with a few
additional installation steps, Rocketeer provides a handful commands under the
deploy namespace to upload new releases or roll back to previous ones.

The package's installation guide as well the full documentation are available at:
http://rocketeer.autopergamene.eu/

After installing the package with Composer, you will be asked to run a
config:publish command, which will copy the necessary configuration files from
the package into your application's configuration directory. Artisan provides similar
:publish commands for assets and views, and you will come across many packages
that depend on that step in the installation process.

The easiest way to learn how to use Rocketeer is to read through the newly created
configuration file to get a feel of what is possible, and then to incrementally adapt it
to your own needs.

Deployment, the old-school way
Whenever possible, you should use web hosts that give you SSH access so that
you can make use of Laravel's Remote package and use Rocketeer or any other
deployment tool.

A Command-line Companion Called Artisan

[80]

In some situations, however, you might not have this luxury and the only alternative
will be to upload everything via FTP. While we do not have to worry about the
number of files and their size when Composer fetches the packages on the server,
with FTP each upload can take a non-negligible amount of time, especially on slow
or tunneled connections.

Luckily, there is a simple package, barryvdh/laravel-vendor-cleanup, that eases
the pain by providing you with a vendor-cleanup command that does exactly what
it says on the tin. It cleans up the vendor/ directory, which is full of files such as tests
and documentation that are completely superfluous in a production environment.
When used with a default Laravel 4.0 installation, this cuts the size of the vendor
directory by half (from 28 MB to 14 MB). The command also knows about the
unnecessary files in common PHP packages such as dompdf or Assetic.

Rolling out your own artisan commands
Maybe at this stage you might be thinking about writing your own bespoke
commands. As you will see, this is surprisingly easy to do with Artisan. If you have
used Symfony's Console component, you will be pleased to know that an Artisan
command is simply an extension of it with a slightly more expressive syntax. This
means that the various helpers will prompt for input, show a progress bar, or format
a table, all available from within Artisan.

The command that we are going to write depends on the application we built in
Chapter 3, Your First Application. It will allow you to export all cat records present in
the database as a CSV with or without a header line. If no output file is specified, the
command will simply dump all records on the screen, in a formatted table.

Creating the command
There are only two required steps to create a command. Firstly, you need to create
the command itself and then you need to register it manually.

This time, the generator to create the class is bundled with Laravel directly:

$ php artisan command:make ExportCatsCommand

This will generate a class inside app/commands/, which you then need to register
inside app/start/artisan.php by adding the following line to it:

Artisan::add(new ExportCatsCommand);

Chapter 6

[81]

If you now run php artisan, you should see a new command called command:name.
This command does not do anything yet, but before we start writing the functionality,
let's briefly look at how it works internally.

The anatomy of a command
Inside the newly created command class, you will find some code that was generated
for you. We will walk through the different properties and methods and see what
their purpose is.

The first two properties are the name and description of the command. Nothing
exciting here; this is only the information that will be shown in the command line
when you run Artisan. The colon is used to namespace the commands.

$name = 'export:cats';
$description = 'Export all cats';

Then you will find the fire method. This is the method that gets called when you
run a particular command. From there, you may retrieve the arguments and options
passed to the command or run other methods.

function fire()

Lastly, there are two methods that are responsible to define the list of arguments or
options that are passed to the command.

function getArguments() { /* Array of arguments */ }
function getOptions() { /* Array of options*/ }

Each argument or option can have a name, a description, and a default value which
can be required or optional. Additionally, options can have a shortcut.

To understand the difference between arguments and options, consider the following
command, where options are prefixed with two dashes:

$ command --option_one=value --option_two -v=1 argument_one
 argument_two

In this example, option_two does not have a value; it is only used as a flag. The -v
only has one dash since it is a shortcut.

Arguments can be retrieved with $this->argument($arg), and options—you
guessed it—with $this->option($opt). If these methods do not receive any
parameters, they simply return the full list of parameters.

A Command-line Companion Called Artisan

[82]

Writing the command
We are going to start by writing a method that retrieves all cats from the database
and returns them as an array:

protected function getCatsData(){
 $cats = Cat::with('breed')->get();
 foreach($cats as $cat){
 $output[] = array($cat->name,
 $cat->date_of_birth,
 $cat->breed->name);
 }
 return $output;
}

There should not be anything new here; we could have used the toArray() method,
which turns an Eloquent collection into an array, but we would have had to flatten
the array and exclude certain fields.

Then we need to define what arguments and options our command expects:

protected function getArguments(){
 return array(
 array('file', InputArgument::OPTIONAL,
 'The output file', null),
);
}

protected function getOptions(){
 return array(
 array('headers', 'h', InputOption::VALUE_NONE,
 'Display headers?', null),
);
}

The last parameter is the default value that the argument and option should have if it
is not specified. In both cases we want it to be null.

Lastly, we write the logic for the fire method:

public function fire(){
 $output_path = $this->argument('file');

 $headers = array('Name', 'Date of Birth', 'Breed');
 $rows = self::getCatsData();

 if($output_path){
 $handle = fopen($output_path, 'w');

Chapter 6

[83]

 if($this->option('headers')){
 fputcsv($handle, $headers);
 }
 foreach($rows as $row){
 fputcsv($handle, $row);
 }
 fclose($handle);
 $this->info("Exported list to $output_path");
 } else {
 $table = $this->getHelperSet()->get('table');
 $table->setHeaders($headers)->setRows($rows);
 $table->render($this->getOutput());
 }
}

While the bulk of this method is relatively straightforward, there are a few
novelties. The first one being the use of the $this->info() method, which writes
an information message to the output. If you need to show an error message in a
different color, you can use the $this->error() method.

Further down in the code, you will see some functions that are used to generate
a table. As we mentioned previously, an Artisan command extends the Symfony
Console component and, therefore, inherits all of its helpers. These can be accessed
with $this->getHelperSet(). Then it is only a matter of passing arrays for the
header and rows of the table and calling the render method.

To see the output of our command, we run:

$ php artisan export:cats

$ php artisan export:cats --headers file.csv

Summary
In this chapter, we have learned about the different ways in which Artisan can assist
you in the development, debugging, and deployment process. We have also seen
how easy it is to build a custom Artisan command and adapt it to your own needs.

If you are relatively new to the command line, you will have had a glimpse into the
power of command-line utilities. If, on the other hand, you are a seasoned user of the
command line and you have written scripts with other programming languages, you
can surely appreciate the simplicity and expressiveness of Artisan.

In the next chapter, we will take a second look at several of the features that were
presented in Chapter 3, Your First Application, and Chapter 4, Authentication and
Security, and see how you would use them in more complex applications.

Architecting Ambitious
Applications

Now that you have had the first taste of most of Laravel's main components, we will
take a second look at their more advanced capabilities and how you can use them
when writing larger applications. You will find that as your application grows in
size and complexity, you will not have to sacrifice the structure and readability of
your code.

In the next couple of pages, you will learn how to:

• Split up your routes into controllers and resources
• Write more complex and efficient queries with Eloquent
• Use different configuration settings depending on where the application runs
• Include your own PHP classes and functions
• Use Laravel's automatic JSON serialization and deserialization features

By the end of this chapter, you will have a better understanding of how to scale a
small- to medium-sized Laravel application, improve its performance, and tweak it
to better suit your needs.

Architecting Ambitious Applications

[86]

Moving from simple routing to powerful
controllers
Up until this point, we have intentionally left out the C in MVC in the code examples,
and defined all of our application endpoints using simple routes. As you can imagine,
having all the routes and their actions defined in a single file works really well for
lightweight projects. But this will rapidly turn into a maintenance nightmare if you
exceed a handful of routes. To avoid this, we will look at how you can split them up
into controllers while keeping routes.php as the map of your application.

Controllers are classes that reside inside app/controllers/. In addition to any
private methods, they will have one or more methods called controller actions,
which essentially serve the same purpose as the anonymous functions we attached
to our routes.

Consider the following example:

Route::get('user/{nickname}/photos', array('before'=>'auth',
 function($nickname){
 // Perform some operations…
 return "something";
}));

To achieve the same functionality with a controller and remove the business logic
from the routes, simply create a new controller, UserController.php:

class UserController {
 public function __construct(){
 $this->beforeFilter('auth');
 }
 public function photos($nickname){
 $this->doSomething();
 return "something";
 }
 private function doSomething(){ /* Any business logic */}
}

This approach can greatly improve the reusability and testability of your code,
especially if doSomething() is used in more than one controller action. You
could test it just once in isolation and then rely on it. When you venture into more
advanced topics such as dependency injection and start using repositories, you can
even swap out entire classes when you instantiate the controller, but we will not
cover this here.

Chapter 7

[87]

Also note that filters can now be attached globally or selectively inside
the controller's constructor. If you want to restrict it to specific actions or
HTTP verbs, please refer to the official documentation that shows you
how to do that at:
http://laravel.com/docs/controllers#controller-filters

Finally, to tell Laravel which controller action to use, simply shorten the route
declaration as follows:

Route::get('user/{nickname}/photos',
 array('uses'=>'UserController@photos'));

Favoring explicit routing
Many MVC frameworks, such as CodeIgniter or earlier versions of Ruby on Rails,
encouraged the use of implicit routing, which, as its name implies, allows you to
implicitly route URLs to their corresponding controller action.

While it is possible and even very easy to automatically route /GET foo/bar/
baz/1 to the getBar action of a FooController (and passing baz and 1 as its two
parameters) with Laravel, it is often better to spend a little bit more time wiring up
the routes explicitly. Even though implicit routing works relatively well for simple
applications, it limits the flexibility and precision of your routes. For instance, you
would have no way of defining the number and format of the expected arguments
to the controller action. /foo/bar/1234 and /foo/bar/baz/0 would both hit
the same controller action. This controller action would then be responsible for
handling routing exceptions, something it should not have to do. On the other
hand, with explicit routing, you can precisely define the name and expected
pattern of each argument.

Another argument in favor of explicit routing is that it makes it much easier to
browse a codebase and allows Artisan to generate a cleaner table when using
php artisan routes.

Straightforward REST routing
Laravel greatly simplifies the creation of REST APIs with its resource controllers.
Since they adhere to conventions, there is only a limited defined set of actions that
can be performed from the controller's actions; POST /cats to create a resource,
PUT /cats/1 to update it, and so on.

Architecting Ambitious Applications

[88]

In fact, almost all of the routes from Chapter 3, Your First Application, could be
rewritten as follows:

Route::resource('cat', 'CatController');

This will register the following routes:

Verb Path Action
GET /cat index

GET /cat/create create

POST /cat store

GET /cat/{id} show

PUT /cat/{id}/edit edit

PUT /cat/{id} update

DELETE /cat/{id} destroy

Then, in a CatController class, you would have all the different actions: index,
store, show, update, and destroy. This is really all you need since they are then
wired up to respond to the correct route and verb! Resource controllers also have
two methods, create and edit, that are used to display a form to edit the resource.

Supercharging your models
In Chapter 3, Your First Application, we learned how to use Eloquent to create models
that represent the entities of our applications. We defined simple foreign key
relationships and we used basic methods such as all(), whereField($value),
and find($id). While these are the methods you will use frequently, Eloquent has
a ton of other useful features and we will now look at some of the most useful ones.

Simple performance tricks
Just like with any ORM that issues SQL queries for you, with Eloquent you can
sometimes shoot yourself in the foot if you do not understand what it does behind
the scene. For this reason, we will start by looking at a couple of things to consider
improving the overall performance of your application.

Chapter 7

[89]

Eager loading records
When displaying several records that have one or more foreign key relationships,
Eloquent will execute a new SQL query to resolve the related records every single
time. This means that if you have 10 cats in your database and you want to display
their breed, which is stored as a foreign key, there will be 10+1 database queries. This
is referred as an n+1 problem; the first query retrieves the record and the n others go
and find the related records. As n or the number of related fields increase, the impact
on the performance of the application will become more noticeable.

To avoid this, make sure you tell Laravel the relations it should preload by using the
with method:

Cat::with('breed', 'owner')->get();

This will perform a first query to load all cats and then perform only two more
queries to retrieve the owners and breeds. If you were displaying 50 cats per page,
for example, eager loading would bring the total number of SQL queries down from
101 to 3!

Selecting only what you need
If you are working with large datasets or tables with many columns, you should
avoid loading the values of all columns into memory. To only select the columns
you need, pass an array to the get method in your query:

Cat::get(array('name'));

This query will simply turn into a SELECT name FROM cats SQL statement.

Profiling your queries
If you are curious about what happens behind the scene when you execute a query
on an Eloquent object, you should install a profiler package. You can choose between
https://github.com/loic-sharma/profiler, which is a port of Laravel 3's
profiler, or https://github.com/barryvdh/laravel-debugbar, which integrates
the generic PHP Debug Bar package. Once installed, they add a toolbar at the bottom
of each rendered view, which shows the SQL queries that were issued on a given
page and the amount of memory used by a request to your application. This is often
the best way to identify potential bottlenecks in your code when you work with
smaller data sets in your local development database.

Architecting Ambitious Applications

[90]

Foolproof models with soft deletes
Usually, when a record is deleted from the database, it is gone forever. If you want
to give the users of your application the ability to recover accidentally deleted
data, simply enable soft deletes on your models by giving them a protected
$softDelete = true; property. You will also need to add a DATETIME column
called deleted_at to the model. This column then remains empty until the record
is removed with the delete() method.

Don't worry about adapting any of your queries to exclude deleted records;
Eloquent takes care of all of this for you by adding the necessary WHERE clause
to each SQL query. If you want to override this behavior, you can chain the
withTrashed() method or, alternatively use onlyTrashed() to get only the
records that were deleted:

Cat::onlyTrashed()->get();

To force the deletion of a model, you need to use the forceDelete() method.

More control with SQL
If you are used to writing SQL by hand, you will probably appreciate Eloquent's
expressiveness, but at the same time, in some instances, you will miss the fine-
grained control you had with SQL. Fortunately, it is possible to run lower-level
commands by using Laravel's query builder, which allows you to call methods to issue
advanced WHERE clauses and JOIN or GROUP BY statements. The overhead in terms of
performance is negligible and you still have the benefit to have a more readable syntax.
Not to mention that your code will be free from SQL injection vulnerabilities.

If you do need to execute raw SQL in a select clause, for example, because you need
to use a feature that does not exist in Laravel's query builder or because the SQL code
is specific to a particular database engine, you can use the DB::raw method.

DB::table('cats')->select(DB::raw('count(*) as cats_count'))

If you need to execute a complete statement and not just a SELECT statement, you can
use DB::statement():

DB::statement("TRUNCATE cats");

Chapter 7

[91]

Listening for model events
The last really useful feature of Eloquent that we will look at is model events. Eloquent
models fire events before and after they are created, saved, updated, deleted, or
restored. It is very easy to listen for those events and execute a function when they
occur. You could, for example, add an event listener to log changes to database
records or send yourself an e-mail whenever a new user signs up.

These event listeners can be defined in a separate file, for example, app/events.php,
which is loaded when the app starts (we will see how to do that later in this chapter).
In simple cases, however, it is absolutely fine to keep them inside the model.

If, for example, we wanted to prevent an administrator from deleting a user who still
has some cats in the database, we would intercept the deletion as follows:

class User extends Eloquent {

 public static function boot(){
 parent::boot();

 static::deleting(function($user){
 if($user->cats->count())
 return false;
 });
 }
}

Since we are overriding boot(), we need to make sure we call this method on the
parent class. This method is responsible for booting the model in a static context.
By using the boot method instead of the constructor method, we avoid binding the
event for each new instance.

The handy paginator class
As you would expect, it is possible to only return portions of a dataset. Rather than
the SQL LIMIT and OFFSET terms, Eloquent prefers two verbs that are slightly more
expressive, skip() and take():

Cat::skip(100)->take(10)->get();

With these methods, along with count(), which are all inherited from the query
builder class, you have all the building blocks to write a paginator to browse
the results.

Architecting Ambitious Applications

[92]

However, Laravel does not expect you to write the pagination logic by yourself.
Instead, it allows you to attach a paginate method at the end of any query.
Thus, the previous query could simply be rewritten as follows:

Cat::paginate(10);

The only thing missing here is the number of records to skip. Laravel's paginator
retrieves this information from the page query string in the URL and then
automatically passes it to the paginator. Therefore, the URL that returns
the same results as our first query would be: /cats?page=11.

To display the previous and next links and the page numbers in your
Blade templates, just call the links method on your Eloquent collection:

{{ $cats->links() }}

This will output the complete HTML markup, which is compatible with
Twitter Bootstrap.

Environment configuration made easy
You will rarely have identical settings in each environment in which your
application runs. You should, for example, always turn off error reporting on a
production server. Perhaps you will have a database running somewhere else than
on localhost in your production environment or maybe you want to intercept
outgoing e-mail with a local SMTP server in the development environment. To
achieve this, the last thing you would want to do is to add a series of conditions
inside your configuration files!

Luckily, Laravel makes it very easy to override the default configuration settings
found inside app/config/. The mechanism to detect and apply the correct settings
depending on the environment is very simple. All you have to do is define the
names of the different environments along with a list of corresponding host names
or IP addresses (for example, localhost, 127.0.0.1, or dev.example.com) inside
bootstrap/start.php:

$environments = array(
 'development' => array('127.0.0.1', 'localhost'),
 'production' => array('*.com'),
);

Chapter 7

[93]

Then, if the app is served from example.com, Laravel will automatically apply any
settings that are defined inside the app/config/production/ folder. Remember
that you only have to define the settings that differ. Therefore, if all you need to do
is disable error messages, you could have an app/config/production/app.php file
that only contains:

return array('debug' => false,);

In the case of the app.php configuration file, this allows you to avoid duplicating the
array of service providers and aliases.

Should you ever need to retrieve the name of the current environment in
your application, you can use the App::environment() method.

Environments and Artisan
From Chapter 6, A Command-line Companion Called Artisan, you know that all of
Artisan's commands start an instance of the Laravel application in your terminal.
This time, since the application is not served from a web server with a hostname, you
will have to explicitly tell Laravel which environment to use by setting the env flag in
your command. For example, if you have a development environment named local,
to migrate your database, you would run:

$ php artisan migrate --env=local

Omitting the --env flag is a frequent mistake when getting started with Laravel and
it can be the source of confusing error messages.

Alternatively, if you want to avoid appending the env flag to every command, you
can add the hostname of your machine to the list in bootstrap/start.php. To find
it out, run Artisan's tinker command and enter:

>var_dump(gethostname());

string(10) "macbook.local"

In this case, the value that we need to add to the array of local environment
hostnames is macbook.local.

Architecting Ambitious Applications

[94]

Adding your own configuration settings
Configuration files are nothing more than simple files that return associative
arrays. If your application depends on some API credentials or any other
configuration values, do not leave them in your routes.php file. Instead,
create a new configuration file and store the settings there. This has several
benefits; it is cleaner, it allows you to swap them out depending on the environment
(like any other Laravel configuration value), and if you need to, you can also exclude
them from version control.

To retrieve and use them in your code, Laravel provides a Config::get($setting,
$default) method that accepts an optional second parameter for a fallback value if
the parameter is not set.

Bringing in your own classes
Whether it is to add a third-party library or incorporate legacy code, new users of
Laravel are often confronted with the problem of not knowing where to place new
classes so that they can be called from their application.

Maybe this will come as a surprise to you, but you are actually free to place the
source files wherever you deem appropriate, be it at the root of app/ or in a
subfolder. This only leaves you with the problem of making sure that the code is
callable. It turns out that there are at least three ways in which this can be achieved,
all of which require you to edit composer.json.

The first method uses the file array, where you simply list the files that should be
loaded when the application starts:

files:[
 "app/helpers.php"
]

This method is well suited to load individual files that only contain functions and do
not depend on object-oriented properties or namespacing.

The second way to load custom code is to add the name of the directory to the
classmap array without removing the existing values:

"autoload": {
 "classmap": [
 "app/libraries/",
 "…"
]
}

Chapter 7

[95]

You can use this method if you want to make all the classes from that
directory callable.

The last method adds a "psr-0" object. As its name implies, it is best suited with
namespaced classes of PSR-0:

"autoload": {
 "...",
 "psr-0": {
 "Cats\\": "app"
 }
}

Since this is a JSON configuration file, we are using a second slash to
escape the namespace separator.

You can now place your namespaced library in the app/ folder and load it from
anywhere in your application:

<?php
use Cats\Presenters\BreedPresenter;

This will look for a file called app/Cats/Presenters/BreedPresenter.php.

With every method described, do not forget to run composer dump-autoload to
refresh the classmap and make sure that PHP can find your classes.

Playing nice with the frontend
JSON has become the de facto format to exchange data with APIs and web browsers.
Out of the box, Laravel provides several features that make working with JSON a
breeze. It automatically serializes arrays and Eloquent collections to JSON when they
are returned from a route. It even serializes paginated results, as you can see in the
example that follows:

Route::get('json-test', function(){ return Cat::paginate(2); });

This will return the following JSON response:

{"total":2,"per_page":2,"current_page":1,"last_page":1,"from":1,
 "to":2,"data":[{...},{...}]}

Architecting Ambitious Applications

[96]

When receiving a request with data in the JSON format, Laravel automatically
deserializes it and merges it with the other input it receives. This means that you
can retrieve it with Input::get('key'), the same method you use to retrieve GET
or POST data.

If you have ever had to build a backend for a Backbone.js application or simply
created a script to receive form data submitted via jQuery, you will undoubtedly
find these features extremely convenient.

Summary
In this final chapter, we have covered a few of the slightly more advanced features of
Laravel. While there are many more topics to explore, you should now have a good
understanding of the possibilities offered by Laravel and you will probably find it
easier to read up on any features that are specific to the type of applications you will
be building in the real world.

In the appendix, you will be presented with a handy reference for many of the other
helpful features that Laravel offers out of the box.

An Arsenal of Tools
Laravel comes with several utilities that help you perform specific tasks, such as
sending e-mails, queuing functions, and manipulating files. It ships with a ton of
handy utilities that it uses internally; the good news is that you can also use them in
your applications. This appendix will present the most useful utilities so you do not
end up rewriting a function that already exists in the framework!

The structure of this appendix is partly based on Jesse O'Brien's cheat sheet, which
is accessible at http://cheats.jesse-obrien.ca/. The examples are based on
Laravel's tests as well as its official documentation and API.

Array helpers
Arrays are the bread and butter of any web application that deals with data. PHP
already offers nearly 80 functions to perform various operations on arrays, and
Laravel complements them with a handful of practical functions that are inspired
by certain functions found in Python and Ruby.

Several of Laravel's classes, including Eloquent collections,
implement the PHP ArrayAccess interface. This means that you
can use them like a normal array in your code and, for instance,
iterate over the items in a foreach loop or use them with the
array functions described here.

Most of the functions support a dot notation to refer to nested values, which is
similar to JavaScript objects. For example, rather than writing $arr['foo']['bar']
['baz'], you can use the array_get helper and write array_get($arr, 'foo.bar.
baz');.

An Arsenal of Tools

[98]

In the following usage examples, we will use three dummy arrays and assume that
they are reset for each example:

$associative = array(
 "foo" => 1,
 "bar" => 2,
);
$multidimensional = array(
 "foo" => array(
 "bar" => 123,
),
);
$list_key_values = array(
 array("foo" => "bar"),
 array("foo" => "baz"),
);

The usage examples of array helpers
We will now have a look at how we can use Laravel's array helper functions to
extract and manipulate the values of those arrays:

• To retrieve a value with a fallback value if the key does not exist, we use the
array_get function:
array_get($multidimensional, 'foo.bar', 'default');
// Returns 123

• To remove a value from an array using the dot notation, we use the
array_forget function:
array_forget($multidimensional, 'foo.bar');
// $multidimensional == array('foo' => array());

• To remove a value from an array and return it, we use the
array_pull function:
array_pull($multidimensional, 'foo.bar');
// Returns 123 and removes the value from the array

• To set a nested value using the dot notation, we use the array_set function:
array_set($multidimensional, 'foo.baz', '456');
// $multidimensional == array('foo' => array('bar' =>
123, 'baz' => '456'));

Appendix

[99]

• To flatten a multidimensional associative array, we use the
array_dot function:
array_dot($multidimensional);
// Returns array('foo.bar' => 123);
array_dot($list_key_values);
// Returns array('0.foo' => 'bar', '1.foo' => 'baz');

• To return all of the the keys and their values from the array except for the
ones that are specified, we use the array_except function:
array_except($associative, array('foo',));
// Returns array('bar' => 2);

• To only extract some keys from an array, we use the array_only function:
array_only($associative, array('bar'));
// Returns array('bar' => 2);

• To return a flattened array containing all of the the nested values (the keys
are dropped), we use the array_fetch function:
array_fetch($list_key_values, 'foo');
// Returns array('bar', 'baz')

• To iterate over the array and return the first value for which the closure
returns true, we use the array_first function:
array_first($associative, function($key, $value){
 return $key == "foo";
});
// Returns 1

• To generate a one-dimensional array containing only the values that are
found in a multidimensional array, we use the array_flatten function:
array_flatten($multidimensional);
// Returns array(123)

• To extract an array of values from a list of key-value pairs, we use the
array_pluck function:
array_pluck($list_key_values, 'foo');
// Returns array('bar', 'baz');

• To get the first or last item of an array (this also works with the values
returned by functions), we use the head and last functions:

head($array); // Aliases to reset($array)
last($array); // Aliases to end($array)

An Arsenal of Tools

[100]

String and text manipulation
The string manipulation functions are found in the Illuminate\Support namespace
and are callable on the Str object.

Most of the functions also have shorter snake_case aliases. The Str::endsWith()
method is, for example, identical to the global ends_with() function. We are free to
use whichever one we prefer in our application.

Boolean functions
The following functions return true or false values:

• The is method checks whether a value matches a pattern. The asterisk can be
used as a wildcard character:
Str::is('projects/*', 'projects/php/'); // Returns true

• The contains method checks whether a string contains a given substring:
Str::contains('Getting Started With Laravel', 'Python');
// returns false

• The startsWith and endsWith methods check whether a string starts or
ends with one or more substrings:

Str::startsWith('.gitignore', '.git'); // Returns true
Str::endsWith('index.php', array('html', 'php')); //
Returns true

Transformation functions
In some cases you need to transform a string before displaying it to the user or using
it in a URL. Laravel provides the following helpers to achieve this:

• This function generates a URL-friendly string:
Str::slug("A/B testing's fun!");
// Returns "ab-testings-fun"

• This function generates a title where every word is capitalized:
Str::title('getting started with laravel');
// Returns "Getting Started With Laravel"

• This function caps a string with an instance of a given character:
Str::finish('/one/trailing/slash', '/');
Str::finish('/one/trailing/slash/', '/');
// Both will return "/one/trailing/slash/"

Appendix

[101]

• This function limits the number of characters in a string:
Str::limit($value, $limit = 100, $end = '...')

• This function limits the number of words in a string:
Str::words($value, $words = 100, $end = '...')

Inflection functions
The following functions help you find out the plural or singular form of a word, even
if it is irregular:

• This function finds out the plural form of a word:
Str::plural('fish');
// Returns "fish"

• This function finds out the singular form of a word:
Str::singular('elves');
// Returns "elf"

Dealing with files
Far more elegant and consistent than its native counterparts in PHP, Laravel's file
manipulation functions make it easier to write the web and console applications that
deal with the uploads along with the filesystem.

File uploads
The following functions will make it easier for you to deal with file uploads in
your application:

• This function creates a form to send files (by adding enctype='multipart/
form-data' to the <form> element):
Form::open(array('files' => true))

• This function creates a file upload field:
Form::file('avatar');

• This function retrieves the uploaded file and saves it to an existing folder
inside app/storage/:
$avatar = Input::file('avatars')->move(storage_path() .
"/uploads/avatars");

• This function retrieves the path of the uploaded file:
$path = Input::file('avatar')->getRealPath();

An Arsenal of Tools

[102]

• This function retrieves the original name of an uploaded file:
$name = Input::file('avatar')->getClientOriginalName();

• This function retrieves the extension of the uploaded file:
$extension = Input::file('avatar')-
>getClientOriginalExtension();

• This function retrieves the size of an uploaded file:

$size = Input::file('photo')->getSize();

File manipulation methods
The File class also exposes several methods to retrieve and manipulate files:

• The following methods check for the existence or type:
File::exists('path/to/file/or/directory');
File::isDirectory('path/to/directory');
File::isWritable('path/to/directory');
File::isFile('path/to/file');

• This method gets the contents of a file:
File::get('path/to/file');

• This method creates a file and writes to it (if the file exists, it is overwritten):
File::put('path/to/file', 'contents');

• The following methods append or prepend to a file:
File::append('path/to/file', contents');
File::prepend('path/to/file', contents');

• This method deletes a file:
File::delete('path/to/file');

• The following methods move or copy files:
File::move('path/to/file', 'new/path/to/file');
File::copy('path/to/file', 'path/to/file-copy');

• The following methods help you get the basic information about a file:
File::extension('path/to/file');
File::type('path/to/file');
File::size('path/to/file');
File::lastModified('path/to/file');

Appendix

[103]

• This method gets an array of all the subdirectories within a given directory:
File::directories('path/to/directory');

• This method gets an array of all the files in a directory:
File::files('path/to/directory');

• This method recursively lists all of the files in a directory and its subdirectories:
File::allFiles('directory');

• These methods perform common operations on directories:
File::makeDirectory('path/to/new/directory', $mode,
$recursive);
File::copyDirectory('source', 'destination', $options =
null);
File::deleteDirectory('path/to/directory');

• This method empties a directory but does not delete it:

File::cleanDirectory('path/to/directory');

Sending e-mails
Laravel's Mail class extends the popular Swift Mailer package, which makes sending
e-mails a breeze. The e-mail templates are loaded in the same way as views, which
means that you can use the Blade syntax and inject data into your templates.

• To inject some data into a template located inside app/views/email/view.
blade.php, we use the following function:
Mail::send('email.view', $data, function($message){});

• To send both an HTML and a plain text version, we use the following function:
Mail::send(array('html.view', 'text.view'), $data,
$callback);

• To delay the e-mail by 5 minutes (this requires a queue), we use the
following function:
Mail::later(5, 'email.view', $data, function($message){});

An Arsenal of Tools

[104]

Inside the $callback closure that receives the message object, we can call the
following methods to alter the message that is to be sent:

• $message->subject('Welcome to the Jungle');

• $message->from('email@example.com', 'Mr. Example');

• $message->to('email@example.com', 'Mr. Example');

Some of the less common methods include:

• $message->sender('email@example.com', 'Mr. Example');

• $message->returnPath('email@example.com');

• $message->cc('email@example.com', 'Mr. Example');

• $message->bcc('email@example.com', 'Mr. Example');

• $message->replyTo('email@example.com', 'Mr. Example');

• $message->priority(2);

To attach or embed files, you can use the following methods:

• $message->attach('path/to/attachment.txt');

• $message->embed(''path/to/attachment.jpg');

If you already have the data in memory, and you do not want to create additional
files, you can use either the attachData or the embedData method:

• $message->attachData($data, 'attachment.txt');

• $message->embedData($data, 'attachment.jpg');

Embedding is generally done with image files, and you can use either the embed
or the embedData method directly inside the body of a message as shown in the
following code snippet:

<p>Product Screenshot:</p>
<p>{{$message->embed('screenshot.jpg')}}</p>

Easier date and time handling with
Carbon
Laravel bundles Carbon (https://github.com/briannesbitt/Carbon),
which extends and augments PHP's native DateTime object with more expressive
methods. Laravel uses it mainly to provide more expressive methods on the date
and time properties (created_at, edited_at, and deleted_at) of an Eloquent
object. However, since the library is already there, it would be a shame not to
use it elsewhere in the code of your application.

Appendix

[105]

Instantiating Carbon objects
Carbon objects are meant to be instantiated like normal DateTime objects. They do,
however, support a handful of more expressive methods.

• Carbon objects can be instantiated using the default constructor that will use
the current date and time:

 ° $now = new Carbon();

• They can be instantiated using the current date and time in a given timezone:
 ° $jetzt = new Carbon('Europe/Berlin');

• They can be instantiated using expressive methods:
 ° $yesterday = Carbon::yesterday();

 ° $demain = Carbon::tomorrow("Europe/Paris");

• They can be instantiated using exact parameters:

 ° Carbon::createFromDate($year, $month, $day, $tz);

 ° Carbon::createFromTime($hour, $minute, $second, $tz);

 ° Carbon::create($year, $month, $day, $hour,
$minute, $second,
$tz);

Outputting user-friendly timestamps
We can generate human-readable relative timestamps such as 5 minutes ago, last week,
or in a year with the diffForHumans() method:

$post = Post::find(123);
echo $post->created_at->diffForHumans();

Boolean methods
Carbon also provides a handful of simple and expressive methods that will come in
handy in your controllers and views:

• $date->isWeekday();

• $date->isWeekend();

• $date->isYesterday();

• $date->isToday();

• $date->isTomorrow();

An Arsenal of Tools

[106]

• $date->isFuture();

• $date->isPast();

• $date->isLeapYear();

Carbon for Eloquent DateTime properties
To be able to call Carbon's methods on attributes stored as DATE or DATETIME types in
the database, you need to list them in a getDates() method in the model:

class Post extends Eloquent {
 // ...
 public function getDates() {
 return array('created_at', 'edited_at', 'published_at',);
 }
}

Don't wait any longer with queues
Queues allow you to defer the execution of functions without blocking the script.
They can be used to run all sorts of functions, from e-mailing a large number of
users to generating PDF reports.

As of Version 4.1, Laravel is compatible with the following queue drivers:

• Beanstalkd, with the pda/pheanstalk package
• Amazon SQS, with the aws/aws-sdk-php package
• IronMQ, with the iron-io/iron_mq package

Each queue system has its advantages. Beanstalkd can be installed on your own
server; Amazon SQS might be more cost-effective and require less maintenance, as
will IronMQ, which is also cloud-based. The latter also lets you set up push queues,
which are great if you cannot run background jobs on your server.

Creating a job and pushing it onto the queue
A job is nothing more than a class with a fire method that accepts two parameters
for the name of the job and the data and that either deletes the job or releases it back
to the queue:

class Job {
 public function fire($job, $data){
 // Perform job…

Appendix

[107]

 // If the job was successful, delete it
 $job-delete();
 // Put it back onto the queue and try to execute it again
 $job->release($seconds);
 }
}

Push a job onto the queue. When called, this will execute the fire method:

Queue::push('Job', $data);

Push a job onto the queue but execute a different method:

Queue::push('Job@method', $data);

You can store your jobs anywhere in your application folder as long as the class is
resolvable (see Chapter 7, Architecting Ambitious Applications). A potential location
would be app/jobs. When developing, it is also fine to push anonymous functions
onto the queue:

Queue::push(function($job) use ($vars, $from, $outer, $scope){
 // Perform job
});

Listening to a queue and executing jobs
The following are the functions used for listening to a queue and executing jobs:

• We can listen to the default queue:
$ php artisan queue:listen

• We can specify the connection on which to listen:
$ php artisan queue:listen connection

• We can specify multiple connections in the order of their priority:
$ php artisan queue:listen important,not-so-important

The queue:listen command has to run in the background in order to process the
jobs as they arrive from the queue. To make sure that it runs permanently, you have
to use a process control system such as forever (https://github.com/nodejitsu/
forever) or supervisor (http://supervisord.org/).

An Arsenal of Tools

[108]

Getting notified when a job fails
To get notified when a job fails, we use the following functions and commands:

• The following event listener is used for finding the failed jobs:
Queue::failing(function($job, $data) {
 // Send email notification
});

• Any of the failed jobs can be stored in a database table and viewed with the
following commands:
$ php artisan queue:failed-table // Create the table
$ php artisan queue:failed // View the failed jobs

Queues without background processes
Push queues do not require a background process but they only work with the
iron.io driver. After signing up for an account on iron.io and adding your
credentials to app/config/queue.php, you use them by defining a POST route
that receives all the incoming jobs. This route calls Queue::marshal(), which
is the method responsible for firing the correct job handler:

Route::post('queue/receive', function() {
 return Queue::marshal();
});

This route then needs to be registered as a subscriber with the queue:subscribe
command:

$ php artisan queue:subscribe queue_name http://yourapp.example.com/
queue/receive

Once the URL is subscribed on http://iron.io/, any newly created jobs with
Queue::push() will be sent from Iron back to your application via a POST request.

Where to go next?
The following is a list of the resources and sites that you can visit to keep up with the
latest changes in Laravel:

• http://twitter.com/laravelphp on Twitter for regular updates
• http://laravel.com/docs for the complete documentation
• http://laravel.com/api for the browsable API
• http://laravel.io for weekly updates and the occasional podcast
• http://laracasts.com for screencast tutorials

Index
Symbols
$cat variable 43
$guarded property 60
$this->error() method 83
$this->info() method 83
$timestamps property 37
--fields parameter 78

A
all() method 42
anonymous functions 10
API

URL 18
App::environment() method 93
application

attributes 30
built-in development server, using 32
engine, turning off 76
entity 30
inspecting with 74, 75
interacting with 74, 75
internals, fiddling with 75
map 30, 31
relationships 30
sketching 30
starting 32
tuning 76

application container 17
array helpers

about 97
example 98, 99

Artisan Anywhere
URL 74

assertions 64

attributes 30
Auth::attempt method 53
Auth::check() method 52

B
be() method 69
Blade

mastering 39
master view, creating 40, 41

Blade template helpers
URL 40

Boolean functions 100
boolean methods 105
Bootstrap 3 CSS framework

URL 40
built-in development server

using 32

C
call() method 68
Carbon

date handling with 104
for Eloquent DateTime properties 106
time handling with 104
URL 104

Carbon objects
instantiating 105

CatController class 88
cat page

adding 44-47
deleting 44-47
displaying 43
editing 44- 47

close() method 67

[110]

command
anatomy 81
creating 80, 81
writing 82, 83

command line
working with 22

Composer
installing, on Unix 23
installing, on Windows 24
URL 22
working 22, 23

Composer class 17
composer validate command 26
Config::get($setting, $default) method 94
content

escaping, to prevent cross-site scripting 58
controllers

about 86
controller actions 86
explicit routing 87
REST routing 87
UserController.php, creating 86

cookies
securing 60

create() method 45
Cross-site request forgery. See CSRF
CSRF 57, 58
csrf_token() function 58

D
database

database schema, building 37, 38
Eloquent models, creating 36, 37
preparing 36
seeding 38, 39
testing with 69, 70

database schema
building 37, 38
creating 50-52

date() method 38
DB::raw method 59, 90
deployment 79
DomCrawler component

URL 71
down method 78

E
Eloquent, features

model events 91
paginator class 91, 92
performance tricks 88
soft deletes 90
SQL 90

Eloquent models
creating 36, 37

EloquentModelStub object 65
e-mails

sending 103
embedData method 104
ends_with() function 100
end-to-end testing

about 67
batteries 67
database, testing with 69, 70
framework assertions 68
rendered views, inspecting 71
users, impersonating 69

engine
turning off 76

entity 30
Environment class 66
environment configuration

about 92, 93
setting, adding 94
tinker command 93

exceptions
expecting 65

F
file manipulation methods 102
files

dealing with 101
file uploads 101
fill() method 65
find() method 43
forceDelete() method 90
forever

URL 107
Form::model() method 47
framework assertions 68

[111]

frameworks
homemade tools, limitations 8
Laravel, using 8
need for 8

G
generate:migration command 78
generators

generators, speeding up with 77
HTML forms, generating 78
migrations, generating 78

getAuthIdentifier() method 50
getAuthPassword() method 50
getCurrentPage() method 66
getDates() method 106
GET method 31
guard() method 65

H
homemade tools

limitations 8
HTML forms

generating 78
HTTP foundation 9
HTTPS

using 60

I
inflection functions 101
Input::get() method 45
intended() method 53
interdependent classes

testing, in isolation 66
interfaces 10
internals

fiddling with 75

J
job

creating 106
executing 107
pushing, onto queue 106

job fail
notifying 108

JSON serialization features
using 96

L
Laravel

controllers 14
exploring 17, 18
features 11-15
models 14
moving, to version 4 18, 19
templates 14
URL 108
using 8
views 14

Laravel application
application container 17
creating 24
request lifecycle 17
structure 16, 17

M
mass-assignment

using 59
master view

creating 40, 41
method variable 44
migrations

generating 78
missing method 35
missing routes

identifying 35
mocks 66
Model-View-Controller (MVC) 9

N
namespaces 10
nullable() method 38

O
objects

cleaning up 65
overloading 10
overview page 42

[112]

P
package installation guide

URL 79
packages

finding 25, 26
installing 25, 26
URL 25

Packagist
URL 22

PATH variable 67
PHP

embracing 10
prettifying 13

PHP application
developing 9
HTTP foundation 9

PHP classes
including 94, 95

PHPUnit
URL 65

phpunit command 67, 68
PHPUnit_Framework_TestCase class 62

Q
queue

job, pushing onto 106
listening to 107
without background processes 108

Queue::marshal() method 108
queue:listen command 107
queue:subscribe command 108

R
raw method 59
Read-Eval-Print Loop (REPL) 75
Redirect::guest() method 53
redirections

handling 35
Redirect object 35
relationships 30
rendered views

inspecting 71
render method 83
request lifecycle 17
resource controllers 14

Response object 35
route parameters

restricting 33, 34
routes

authenticating 52,-56
cat page, adding 44-47
cat page, deleting 44-47
cat page, displaying 43
cat page, editing 44-47
missing routes, identifying 35
overview page 42
redirections, handling 35
route parameters, restricting 33, 34
views, returning 35, 36
writing 33

routes command 74
run() method 38

S
scene

preparing 65
setUp() method 65-69
shorter array syntax 10
single command

deploying 79
SQL injection

avoiding 59
standard controllers 14
Str::endsWith() method 100
string() method 38
Str object 100

T
tearDown() method 65
test anatomy 62, 63
TestCase class 62
testing

benefits 62
third-party commands

installing 76
single command, deploying 79
workflow, speeding up with generators 77

tinker command 93
toArray() method 82
toJson() method 10
transformation functions 100

[113]

U
unit testing

about 64
with PHPUnit 64

unit testing, PHPUnit
assertions 64
exceptions, expecting 65
interdependent classes, testing in isolation

66
objects, cleaning up 65
scene, preparing 65

Unix
Composer, installing on 23

update() method 45
user-friendly timestamps

outputting 105
user input

validating 56, 57
user model

creating 49, 50
users

authenticating 49
impersonating 69

users, authenticating
database schema, creating 50-52
routes, authenticating 52-56
user input, validating 56, 57
user model, creating 49, 50
views, authenticating 52-56

V
vendor-cleanup command 80
View::make method 36
View object 35
views

authenticating 52-56
returning 35, 36

W
Windows

Composer, installing on 24
with() method 42
withTrashed() method 90
workflow

speeding up, with generators 77

Thank you for buying
Getting Started with Laravel 4

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Laravel Starter
ISBN: 978-1-78216-090-8 Paperback: 64 pages

The definitive introduction to the Laravel PHP web
development framework

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Create databases using Laravel's migrations

3. Learn how to implement powerful relationships
with Laravel's own "Eloquent" ActiveRecord
implementation

Laravel Application Development
Cookbook
ISBN: 978-1-78216-282-7 Paperback: 272 pages

Over 90 recipes to learn all the key aspects of Laravel,
including installation authentication, testing, and the
deployment and integration of third parties in your
application

1. Install and set up a Laravel application and
then deploy and integrate third parties in your
application

2. Create a secure authentication system and build
a RESTful API

3. Build your own Composer Package and
incorporate JavaScript and AJAX methods
into Laravel

Please check www.PacktPub.com for information on our titles

Laravel Application Development
Blueprints
ISBN: 978-1-78328-211-1 Paperback: 260 pages

Learn to develop 10 fantastic applications with the
new and improved Laravel 4

1. Learn how to integrate third-party scripts and
libraries into your application

2. With different techniques, learn how to adapt
different methods to your needs

3. Expand your knowledge of Laravel 4 so
you can tailor the sample solutions to your
requirements

Instant Slic3r
ISBN: 978-1-78328-497-9 Paperback: 68 pages

Unravel the mysteries behind taking a virtual model
and turning it into a physical object

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Use Slic3r to make your printed objects the best
quality possible

4. Make Slic3r work for you, automating tasks
and doing post processing on Slic3r output

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meeting Laravel
	The need for frameworks
	The limitations of homemade tools
	Laravel to the rescue

	A new approach to developing PHP applications
	A more robust HTTP foundation
	Embracing PHP

	Laravel's main features and sources of inspiration
	Expressiveness and simplicity
	Prettifying PHP

	Responsibilities, naming and conventions
	Helping you become a better developer

	Structure of a Laravel application
	The application container and request lifecycle
	Exploring Laravel
	Moving from Version 3 to Version 4

	Summary

	Chapter 2: Composer All Over
	Working with the command line
	How does Composer work
	Installation
	UNIX (Mac OS, Linux)
	Windows

	Creating a new Laravel application
	Finding and installing new packages
	Additional advice
	Summary

	Chapter 3: Your First Application
	Sketching out the application
	Entities, relationships, and attributes
	The map of our application

	Starting the application
	Using the built-in development server

	Writing the first routes
	Restricting the route parameters
	Catching the missing routes
	Handling redirections
	Returning views

	Preparing the database
	Creating the Eloquent models
	Building the database schema
	Seeding the database

	Mastering Blade
	Creating a master view

	Back to the routes
	The overview page
	Displaying a cat's page
	Adding, editing, and deleting cats

	Summary

	Chapter 4: Authentication and Security
	Authenticating users
	Creating the user model
	Creating the necessary database schema
	Authentication routes and views
	Validating user input

	Securing your application
	Cross-site request forgery
	Escaping content to prevent cross-site scripting – XSS
	Avoiding SQL injection
	Using mass-assignment with care
	Cookies – secure by default
	Forcing HTTPS when exchanging sensitive data

	Summary

	Chapter 5: Testing – It's Easier Than You Think
	The benefits of testing
	The anatomy of a test
	Unit testing with PHPUnit
	Defining what you expect with assertions
	Preparing the scene and cleaning up objects
	Expecting exceptions
	Test interdependent classes in isolation

	End-to-end testing
	Testing – batteries included
	Framework assertions
	Impersonating users
	Testing with a database
	Inspecting the rendered views

	Summary

	Chapter 6: A Command Line Companion Called Artisan
	Keeping up with the latest changes
	Inspecting and interacting with your application
	Fiddling with the internals
	Turn the engine off
	Fine-tune your application

	Installing third-party commands
	Speed up your workflow with generators
	Generating migrations
	Generating HTML forms
	Generating everything else

	Deploying with a single command
	Deployment, the old-school way

	Rolling out your own artisan commands
	Creating the command
	The anatomy of a command
	Writing the command

	Summary

	Chapter 7: Architecting Ambitious Applications
	Moving from simple routing to powerful controllers
	Favoring explicit routing
	Straightforward REST routing

	Supercharging your models
	Simple performance tricks
	Eager loading records
	Selecting only what you need
	Profile your queries

	Foolproof models with soft deletes
	More control with SQL
	Listening for model events
	The handy paginator class

	Environment configuration made easy
	Environments and Artisan
	Add your own configuration settings

	Bring in your own classes
	Playing nice with the frontend
	Summary

	Appendix: An Arsenal of Tools
	Array helpers
	The usage examples of array helpers

	String and text manipulation
	Boolean functions
	Transformation functions
	Inflection functions

	Dealing with files
	File uploads
	File manipulation methods

	Sending e-mails
	Easier date and time handling with Carbon
	Instantiating Carbon objects
	Outputting user-friendly timestamps
	Boolean methods
	Carbon for Eloquent DateTime properties

	Don't wait any longer with queues
	Creating a job and pushing it onto the queue
	Listening to a queue and executing jobs
	Getting notified when a job fails
	Queues without background processes

	Where to go next?

	Index

